期刊文献+

两种格林函数的快速多极子求解方法

The fast multipole method to solve two kinds of Green's Functions
下载PDF
导出
摘要 高阶边界元法在很多工程计算中得到了广泛的应用,但由于需要多次求解格林函数及其导数,高昂的计算量和存储量使其很难应用于大型工程问题。本文采用快速多极子方法,对于形如l/r的简单格林函数采用球坐标系下的双谐展开,对于满足自由水面条件的复杂格林函数则在柱坐标系下展开,使其计算量和存储量都由未知量的平方量级降为未知量的线性量级。对于高阶边界元法中的固角系数和柯西主值积分本文采用了直接求解的方法。通过对无限区域中水流对圆球的绕射和波浪与漂浮方箱的数值计算,表明对于大中型计算问题FMM算法更加有效。 The higher order boundary element method (HOBEM) has been widely used in engineering calculations, but it is difficult to solve the large-scale problems because of large computation cost and computer storage needed to compute the Green's function and its' corresponding derivatives many times.In this paper,the fast multipole method is applied in HOBEM to overcome the embarrassing situation.The simple Green's function (l/r) and the Green's function satisfying the free surface boundary conditions are expanded in sphere coordinate and the cylinder coordinate system respectively,which can result in the computation cost and computer storage being decreased from O(N^2) order to nearly O(N) order.The free-term coefficient and the CPV integrals are obtained by using a direct method in higher-order boundary integral equation.In order to verify this present numerical model,the flow diffraction from a stationary sphere in an unbounded domain and wave actions on a floating box are simulated respectively.The results show that this present method is accurate enough and more efficient to solve the large-scale problems.
出处 《中国科技论文在线》 CAS 2007年第1期16-20,共5页
关键词 高阶边界元法 快速多极子方法 格林函数 higher order boundary element method fast multipole method Green's function
  • 相关文献

二级参考文献12

  • 1滕斌.波浪力计算中的一个新边界元方法[J].水动力学研究与进展(A辑),1994,9(2):215-223. 被引量:16
  • 2LIU Y H,KIM C H,KIM M H.The computation of mean drift forces and wave run-up by higher-order boundary element method[J].Proc Inter Offshore and Polar Eng Conf,1990,3:476-481.
  • 3TAYLOR Eatock R,CHAU F P.Wave diffraction-some developments in linear and non-linear theory[J].Proc of OMAE,1991,(1-a):19-27.
  • 4TENG Bin,TATLOR Eatock R.New higher-order boundary element method for wave diffraction/radiation[J].Applied Ocean Research,1995,17(2):71-77.
  • 5LI H B,HANG M,MANG H A.A new method for evaluating singular integrals in stress analysis of solids by the direct boundary element method[J].Int J Num Meth in Eng,1985,211:2 071-2 075.
  • 6MONTIC V.A new formula for the C-matrix in the Somigliana identity[J].Journal of Elasticity,1993,33:191-201.
  • 7GUIGGIANI M,GIGANTE A.A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method[J].Jour of Applied Mechanics,1990,57:906-915.
  • 8ROKHLIN V.Rapid solution of integral equations of classical potential theory[J].J Comp Phys,1985,60:187-207.
  • 9POZRIKIDIS C.Introduction to Theoretical and Computational Fluid Dynamics[M].Oxford University Press,New York,Oxford,1997.
  • 10GREENGARD L.The Rapid Evaluation of Potential Fields in Particle Systems[M].Cambridge,MA:MIT Press,1988.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部