期刊文献+

基于XFP-tree的XML结构重构策略

An intelligence strategy of refactoring XML structure based on XFP-tree
下载PDF
导出
摘要 基于海量XML文档查询速度已不能满足日益增长的信息关联和服务请求多样性的需求,本文提出一个重构XML结构的频繁向量选择增量模式树(XFP-tree)算法,该算法以XML键为基础,首先对XML结构进行向量矩阵处理,再通过投影频繁模式树实现对XML结构进行分裂、合并、更改与取消等优化措施,满足XML结构简洁性与查询多样性;结合投影和树结构技术,讨论XML键向量矩阵频繁项集的划分规则,而相应启发式策略的制定与支持度阈值的讨论有利于算法效率的提高。对比其它关联算法,一系列仿真实验表明所提出的算法具有一定的有效性及合理性,是重构XML结构的一种有效方法。 Because the query rate based on the XML documents is unable to fulfill the daily increasing demands of the information association and the multiformity of service request, this paper proposed a new frequent pattern tree algorithm for selected incremental vector items set of refactoring XML structure (XFP-tree). The algorithm bases on the XML key, firstly deals XML structure with vector matrix processing, then uses project frequent pattern tree to optimize the XML structure by dissociating, uniting, updating and canceling etc. in order to satisfy the conciseness of the XML structure and query multiformity. Combining project and tree-structure manipulation, it discusses the divide rule of XML key vector matrix frequent pattern. And it improves the algorithm efficiency by establishing heuristic strategy and support thresholds. Contrasted with other association rule’s algorithms, a series of emulation experiments show that this method which has proper the effectiveness and feasibility is an efficacious method of refactoring XML structure.
出处 《中国科技论文在线》 CAS 2008年第2期85-92,共8页
基金 湖南信息职业学院科技创新项目(108652006011) 湖南省教育厅科研基金资助项目(05c671)
关键词 数据库理论 XML结构重构 XML键 向量矩阵 投影频繁模式树 database theory XML structure refactoring XML key vector matrix project frequent pattern tree
  • 相关文献

参考文献4

二级参考文献34

  • 1宋余庆 朱玉全 孙志辉 陈耿.基于FP—Tree的最大频繁项集挖掘及其更新算法.软件学报,2003,14(9):1586—1592[J].http://wwwjos.org.cn/1000-9825/14/1586.htm,:.
  • 2Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proc. of the 20th Int'l Conf. on VLDB. 1994. 487-499.http://www.almaden.ibm.conVcs/people/srikant/papers/vldb94.pdf.
  • 3Bayardo R. Efficiently mining long patterns from databases. In: Haas LM, ed. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1998. 85-93.
  • 4Burdick D, Calimlim M, Gehrke J. Mafia: A maximal frequent itemset algorithm for transactional databases. In: Proc. of the 17th Int'l Conf. on Data Engineering. 2001. 443-452. http://www.cs.cornell.edu/boom/2001 sp/yiu/mafia-camera.pdf.
  • 5Gouda K, Zaki MJ. Efficiently mining maximal frequent itemsets. In: Proc. of the 1st IEEE Int'l Conf. on Data Mining. 2001.163-170. http ://www.cs .tau. ac .il/-fiat/dmsem03/E fficient%20Mining%20Maxmal%20Frequent%20Itemsets%20-%202001 .pdf.
  • 6Wang H, Li QH. An improved maximal frequent itemset algorithm. In: Wang GY, eds. Proc of the Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, the 9th Int'l Conf (RSFDGrC 2003). LNCS 2639, Heidelberg: Springer-Verlag, 2003. 484-490.
  • 7Zhou QH, Wesley C, Lu BJ. SmartMiner: A depth 1st algorithm guided by tail information for mining maximal frequent itemsets.In: Proc of the IEEE Int'l Conf on Data Mining (ICDM2002). 2002. 570-577. http://www.serviceware.com/pdffiles/datasheets/ServiceWare-Smartminer-Datasheet.pdf.
  • 8Grahne G, Zhu JF. High performance mining of maximal frequent itemsets. In: Proc of the 6th SIAM Int'l Workshop on High Performance Data Mining (HPDM 2003). 2003. 135-143. http://www.cs.concordia.ca/db/dbdm/hpdm03.pdf.
  • 9Agarwal RC, Aggarwal CC, Prasad VVV. Depth 1 st generation of long patterns. In: Proc. of the 6th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining. 2000. 108-118. http://www.cs.tau.ac.il/-fiat/dmsem03/Depth%20First%20Generation%20of%20Long%20Patterns%20-%202000.pdf.
  • 10Wang H, Xiao ZJ, Zhang H J, Jiang SY. Parallel algorithm for mining maximal frequent patterns. In: Zhou XM, ed. Advanced Parallel Processing Technologies (APPT 2003). LNCS 2834, Heidelberg: Springer-Verlag, 2003. 241-248.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部