期刊文献+

基于线性光谱混合模型的光谱解混改进模型 被引量:9

An improved spectral unmixing modeling based on linear spectral mixing modeling
原文传递
导出
摘要 传统的基于线性光谱混合模型(LSMM)的解混方法采用迭代求解方式,复杂度较高,为此提出一种基于几何方式的模型求解方法。另一方面,LSMM采用固定谱形固定数量的光谱端元进行解混,影响了光谱解混精度,为此提出端元谱形的区域修正方法和端元子集的局域确定方法,从而建立基于柔性端元的新解混方式。实验表明了所提出的几何求解方法及柔性光谱端元方式的有效性。 Spectral unmixing is one of the important techniques of hyperspectral imagery processing.Traditional spectral unmixing method based on linear spectral mixing modeling(LSMM) is solved in terms of iteration manner,which suffers a heavy computational burden.In this case,a geometric solving method is proposed for LSMM instead of the iteration manner.Additionally,fixed number and fixed shape of endmembers are used in LSMM,leading to a discount unmixing accuracy.Aiming at this problem and constructing a new spectral unmixing way based on flexibly determined endmembers,the method of spectral shape modifying regionally and the method of endmember subset determining locally are proposed.Experiments show the validation of the geometric solving method of LSMM and the determination method of flexible endmembers.
作者 王立国 张晶
出处 《光电子.激光》 EI CAS CSCD 北大核心 2010年第8期1222-1226,共5页 Journal of Optoelectronics·Laser
基金 国家自然科学基金资助项目(60802059) 教育部博士点新教师基金资助项目(200802171003) 水下机器人国防重点实验室开放课题基金联合资助项目
关键词 高光谱图像(HSI) 光谱解混 线性光谱混合模型(LSMM) 几何求解 柔性光谱端元 hyperspectral imagery(HSI) spectral unmixing linear spectral mixing modeling(LSMM) geometric solving flexible endmembers
  • 相关文献

参考文献12

  • 1Algorithms and technologies for multispectral hyprspectral,and ultraspectral imagery XIV [A]. Anon Source: Proceedings of SPIE[C]. 2008,6966 : 570.
  • 2李熙,关泽群,沈体雁.基于贝叶斯网络的混合像元分解模型[J].光电子.激光,2008,19(8):1121-1126. 被引量:4
  • 3顾松刚,史培军.基于混合象元分解的辽东湾海冰资源量估算[J].北京师范大学学报(自然科学版),2004,40(3):411-416. 被引量:5
  • 4Richards J A, JIA Xiu-ping. Remote sensing digital image analysis[M]. 3 rd Ed., Berlin, Germany: Springer-Verlag, 2006.
  • 5Giles M Foody,Ajay Mathur. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM[J]. Remote Sensing of Environment, 2006 (103) : 179- 189.
  • 6Ji B, Chang C I, Jensen J O,et ai. Unsupervised constrained linear Fisher's discriminant analysis fer hyperspectral image classification[A]. In 49th Annu. Meeting, SPIE Int. Symp. Optical Science and technology, Imaging Spectrometry IX (AM105) [C]. Denver,CO, 2004,2-4.
  • 7Adams J B, Smith M O, Johnson P E. Spectral mixture modeling:a new analysis of rock and soil types at the Viking Lander I site[J]. J Geophys Res,1985 ,91:8098-8112.
  • 8Keshava J F, Mustard. Spectral unmixing,signal processing magazine[J]. IEEE,2002(19) :44-57.
  • 9Heinz D C, Chang C I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Trans Geosci Remote Sensing, 2001,39:529-545.
  • 10WANG Li-guo,JIA Xiu-ping. Integration of soft and hard classification using extended support vector machines [J]. IEEE Transaction on Geoscience and Remote Sesning Letters,2009, 6(3) :543-547.

二级参考文献21

  • 1吴健平,杨星卫.用NOAA/AVHRR数据估算上海地区水稻种植面积[J].应用气象学报,1996,7(2):190-194. 被引量:28
  • 2丛浩,张良培,李平湘.一种端元可变的混合像元分解方法[J].中国图象图形学报,2006,11(8):1092-1096. 被引量:24
  • 3潘兵,谢惠民.基于差分进化的数字图像相关方法[J].光电子.激光,2007,18(1):100-103. 被引量:20
  • 4黄润恒 王强 等.NOAA卫星图像海冰参数的提取[A]..中国遥感进展[C].北京:万国出版社,1992..
  • 5[3]Christine A H,Michael A S.Unmaxing AVHRR imagery to assess clearcuts and forest regrowth in Oregon[J].IEEE Transactions on Geoscience and Remote Sensing,1995,33(3):788
  • 6[4]Cross M.Subpixel measurement of tropical cover using AVHRR data[J].International Journal of Remote Sensing,1991,12(5):1119
  • 7[5]Quarmby N A.Linear mixture modeling applied to AVHRR data for crop area estimation[J].International Journal of Remote Sensing,1995,13(3):415
  • 8[6]Wang Fangju.Fuzzy supervised classification of remote sensing images[J].IEEE Transations on Geoscience and Remote Sensing,1990,28(2):194
  • 9[13]Igor A,Kenneth A J.Fresh water ice visible/infrared imager/radiometer suite algorithm theoretical basis document(version 5.1)[R].Raytheon systems company,Information technology and scientific services,2002,5
  • 10[15]Grenfell T G,Perovich D K.Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort Sea[J].J Grophys Res,1984,89:3573

共引文献7

同被引文献137

引证文献9

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部