期刊文献+

一种孤立词语音识别的实现方法及改进 被引量:3

Realization and Improvement of Isolated Word Phonetic Recognition
下载PDF
导出
摘要 通过对特征提取模块2个重要部分:端点检测和线性预测倒谱(LPCC)相关原理的介绍分析,阐述了一种以线性预测倒谱(LPCC)为基础,进行特征提取的孤立词语音识别的具体实现方法,并对该方法所描述的系统进行了软件建模。通过分析研究,给出了提高识别率的具体改进方案。最后使用Matlab软件对相关方法及结论进行了验证,表明该方法确实在传统方法的基础上提高了识别率,且速度较快,具有实用性和良好的硬件可移植性,并讨论了它在一些关键环节的未来实现及改进方向。 An implementation method of the isolated word speech recognition with feature extraction based on the linear prediction cepstrum(LPCC)is elaborated by the analysis of the relevant principles of two important parts(the endpoint detection and LPCC)of the feature extraction module.The software modeling of the system which is described by the method is carried out.A specific improvement program to improve the recognition rate is given through the analysis.carried on the confirmation for the relevant method and conclusion are demonstrated with Matlab software.The demonstration shows that the method can raise the recognition rate indeed based on the traditional method,and has the characteristics of high-speed recognition,good practicability and hardware portability.The direction of the future implementation and improvement in some key links is discussed for the method.
出处 《现代电子技术》 2010年第16期109-112,共4页 Modern Electronics Technique
关键词 语音识别 特征提取 LPCC MATLAB phonetic recognization feature extraction LPCC Matlab
  • 相关文献

参考文献5

  • 1GERVEN S,XIE FEI.A comparative study of speech detection method[C].EUROSPEECH,Greece,1997:1015-1020.
  • 2GU H,TSENG C,LEE L.Isolated-utterance speech recognition using hidden markov models with bounded states durations[J].IEEE Transaction on SP,l991,39(8):1743-1752.
  • 3易出克,田斌,付强.语音信号处理[M].北京:国防工业出版社,2003.
  • 4韩利竹,王华.Matlab 电子仿真与应用[M].北京:国防工业出版社,2007.
  • 5SILVERMAN H F,PMORGAN D.The application of dynamic programming to connected speech recognition[J].IEEE Assp Mag.,1990,17(7):6-25.

同被引文献13

  • 1罗跃嘉,吴健辉.情绪的心理控制与认知研究策略[J].西南师范大学学报(人文社会科学版),2005,31(2):26-29. 被引量:24
  • 2焦志平,张雪英,赵姝彦.一种基于听觉模型的抗噪语音识别特征提取方法[J].太原理工大学学报,2005,36(1):13-15. 被引量:8
  • 3Dimitrio Ververillis, Constantine Kotropoulos. Emotional speech recognition: resources, features, and methods [J]. Spoooh Cornmunitation, 2006, 48:1162-1181.
  • 4Doh-suk Kim, Soo-Yong Lee, maee M. Kil. Auditory processing of speech signal for robust speech recognition in real-world noisy envirroments [J]. IEEE Trasnsaotions Speoch andAuflio Processing, 1999,7(1) :55-58.
  • 5Ying Sun, Xueying Zhang. A Study of Zero-Crossings with Peak-Amplitudes in Speech Emotion Classification [C]. The First International Conference on Pervasive Computing, Signal Processing and Applications, Harbin, China, Sep. 17-19, 20101 328 - 331.
  • 6He L, Lech M, Maddage N, Allen N. Emotion recognition in speech of parents of depressed adolescents [C]. Proceedings of the Third International Conference on Bioinformatics and Biomedical Engineering (ICBBE 2009). Beijing, China, June 11-13, 2009, 1-4.
  • 7F. Burkhardt, A. Paeschke, M. Rolfes, W. Sendlmeier, B. Weiss. A database of German emotional speech [J]. Proe. Interspeech, 2005: 1517-1520.
  • 8W. M. Chmpbell, J. P. CampeU, D.A. Reynolds, E. Singer, P.A. Torres-Carrasquillo.. Support vector machines for speaker and language recognition [J]. Computex Speech and Language, 2006, 20: 210-229.
  • 9Mohanunad Shami, Wemer Verhlst. An evaluation of the robuness of existing supervised machine learning approaches to the classification of emotions in speech [J]. Speech Communication, 2007, 49: 201-212.
  • 10袁正午,肖旺辉.改进的混合MFCC语音识别算法研究[J].计算机工程与应用,2009,45(33):108-110. 被引量:18

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部