期刊文献+

基于两阶段聚类的洗钱行为识别 被引量:5

Money Laundering Recognition Based on Two-stage Clustering
下载PDF
导出
摘要 通过改进层次聚类和k-means聚类,建立两阶段聚类方法。采用两阶段聚类识别出异常点并得到高质量的聚类结果。结合证券公司客户真实交易数据和人工数据,使用Clementine进行建模从而实现聚类过程,识别出异常值并计算可疑记录的可疑程度,为金融情报部门提供了高质量的调查数据。 This paper improves the hierarchical and k-means clustering,builds the two-stage clustering method.It gets the outliers and high-quality clustering results by the two-stage clustering method.It uses Clementine to model the process of realization of clustering by clients’ real transaction records in securities companies and manual data,identifies outliers and calculates the suspicious degree of the records,and provides high-quality survey data for the financial intelligence departments.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第15期60-62,65,共4页 Computer Engineering
关键词 层次聚类 K-MEANS聚类 数据挖掘 可疑交易 洗钱 hierarchical clustering k-means clustering data mining suspicious transactions money laundering
  • 相关文献

参考文献2

二级参考文献9

共引文献31

同被引文献30

  • 1洪志令 ,姜青山 ,董槐林 ,Wang Sheng-Rui .模糊聚类中判别聚类有效性的新指标[J].计算机科学,2004,31(10):121-125. 被引量:15
  • 2余红.惯性仪器通用测试技术应用研究[J].工业控制计算机,2005,18(11):19-20. 被引量:4
  • 3Yeh Ruey-Ling, Liu Ching, Shia Ben-Chang, et al. Imputing manufacturing material in data mining [ J]. Joumal of Intelligent Manufacturing,2008,19 ( 1 ) : 110-113.
  • 4Fong A C M, Hui S C. An intelligent online machine fault diagnosis system [ J ]. Computing & Control Engineering Journal, 2001,25(10) :217-220.
  • 5Hosseini S M S, Maleki A, Gholamian M R. Cluster analysis using data mining approach to develop CRM methodology to assess the customer loyalty [J]. Expert Systems with Applications ,2010,37 ( 7 ) :5260-5262.
  • 6Cox IJ, Lewis RW, Ransing RS, Laszczewski H, Bemi G. Application of neural computing in basic oxygen steelmaking. Journal of Materials Processing Technology, 2002,120(1-3):310-315.
  • 7Park NH, Oh SH, Lee WS. Anomaly intrusion detection by clustering transactional audit streams in a host computer. Information Sciences,2010,180(12):2375-2389.
  • 8薛薇,陈欢歌.Clementin数据挖掘方法及应用.北京:电子工业出版社,2010.
  • 9Xie X L,Beni G.A Validity Measure for Fuzzy Clustering[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1991,13(8):841-847.
  • 10Sun Haojun,Wang Shengrui,Jiang Qingshan.FCM-based ModelSelection Algorithms for Determining the Number of Clusters[J].Pattern Recognition,2004,37(10):2027-2037.

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部