摘要
通过对玻璃切割问题的研究,提出一种融合量子粒子群优化和蚁群优化的混合算法(QPSO-ACO算法)。该算法对QPSO及ACO的模型进行必要的修改,以实现对玻璃切割中的旅行商问题的较好求解。同时充分利用QPSO的快速性、全局收敛性和ACO的正反馈性及求精解效率高等特点,达到优势互补。实验结果表明,QPSO-ACO算法寻优能力较强,是解决玻璃切割问题的有效方法。
Through the study on the glass-block cutting problem,a new hybrid algorithm of Quantum-behaved Particle Swarm Optimization and Ant Colony Optimization(QPSO-ACO algorithm) is proposed.The algorithm modifies the model of QPSO and ACO to solve Traveling Salesman Problem(TSP) in glass-block cutting.It makes full use of the positive feedback mechanism and high solution efficiency of ACO,as well as the fast convergence of QPSO.Experimental results show that QPSO-ACO algorithm has stronger optimization ability in solving the glass-block cutting problem.
出处
《计算机工程》
CAS
CSCD
北大核心
2010年第15期171-173,共3页
Computer Engineering
基金
江苏省高校高技术产业化基金资助项目"全自动数控玻璃切割系统"(JHB05-31)
关键词
群智能算法
量子粒子群优化
蚁群优化
玻璃切割
旅行商问题
swarm intelligent algorithm
Quantum-behaved Particle Swarm Optimization(QPSO)
Ant Colony Optimization(ACO)
glass-block cutting
Traveling Salesman Problem(TSP)