期刊文献+

基于群智能算法的玻璃切割问题求解研究 被引量:1

Study on Glass-block Cutting Problem Solving Based on Swarm Intelligent Algorithm
下载PDF
导出
摘要 通过对玻璃切割问题的研究,提出一种融合量子粒子群优化和蚁群优化的混合算法(QPSO-ACO算法)。该算法对QPSO及ACO的模型进行必要的修改,以实现对玻璃切割中的旅行商问题的较好求解。同时充分利用QPSO的快速性、全局收敛性和ACO的正反馈性及求精解效率高等特点,达到优势互补。实验结果表明,QPSO-ACO算法寻优能力较强,是解决玻璃切割问题的有效方法。 Through the study on the glass-block cutting problem,a new hybrid algorithm of Quantum-behaved Particle Swarm Optimization and Ant Colony Optimization(QPSO-ACO algorithm) is proposed.The algorithm modifies the model of QPSO and ACO to solve Traveling Salesman Problem(TSP) in glass-block cutting.It makes full use of the positive feedback mechanism and high solution efficiency of ACO,as well as the fast convergence of QPSO.Experimental results show that QPSO-ACO algorithm has stronger optimization ability in solving the glass-block cutting problem.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第15期171-173,共3页 Computer Engineering
基金 江苏省高校高技术产业化基金资助项目"全自动数控玻璃切割系统"(JHB05-31)
关键词 群智能算法 量子粒子群优化 蚁群优化 玻璃切割 旅行商问题 swarm intelligent algorithm Quantum-behaved Particle Swarm Optimization(QPSO) Ant Colony Optimization(ACO) glass-block cutting Traveling Salesman Problem(TSP)
  • 相关文献

参考文献5

  • 1Dorigo M,Maniezzo V,Colorni A.The Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Transactions on Systems,Man and Cybernetics,1996,26(1):23-31.
  • 2Kennedy J,Eberhart R.Particle Swarm Optimization[C]// Proceedings IEEE International Joint Conference on Neural Networks.[S.l.]:IEEE Press,1995:1942-1948.
  • 3Sun Jun,Xu Wenbo.A Global Search Strategy of Quantum-behaved Particle Swarm Optimization[C]//Proceedings of IEEE Conference on Cybernetics and Intelligent Systems.[S.l.]:IEEE Press,2004:111-116.
  • 4Clerc M.Discrete Particle Swarm Optimization Illustrated by the Traveling Salesman Problem[EB/OL].(2007-04-20).http://www.mauriceclerc.net.
  • 5陈其晖,凌培亮,萧蕴诗.基于改进微粒群优化的学习路径优化控制方法[J].计算机工程,2008,34(4):190-192. 被引量:8

二级参考文献5

  • 1Albert D. Knowledge Structure[M]. New York: Springer-Verlag, 1994.
  • 2Albert D, Hockemeyer C. Adaptive and Dynamic Hypertext Tutoring Systems Based on Knowledge Space Theory[M]. Amsterdam: 1OS Press, 1997: 553-555.
  • 3Falmagne J C, Doignon J P, Cosyn E, et al. The Assessment of Knowledge in Theory and in Practice[C]//Proc. of the International Conference on Integration of Knowledge Intensive Multi-agent Systems. Boston: [s. n.]. 2003: 609-615.
  • 4谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422
  • 5黄岚,王康平,周春光,庞巍,董龙江,彭利.粒子群优化算法求解旅行商问题[J].吉林大学学报(理学版),2003,41(4):477-480. 被引量:139

共引文献7

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部