期刊文献+

基于固定增量单样本感知器的AdaBoost算法

AdaBoost Algorithm Based on Fixed Increment Simple Sample Perceptron
下载PDF
导出
摘要 针对传统AdaBoost算法在分类过程中时间复杂度和算法学习复杂度较高的问题,提出一种改进的算法AdaBoostFISP。以固定增量单样本感知器为弱分类器,在感知器的权值更新上采用固定增量代替变量增量,从而减少运算时间、降低学习复杂度。实验结果证明了该算法在预测准确性、学习复杂度和时间复杂度等方面的优势。 To solve the problem of high time complexity and high learning complexity of traditional AdaBoost algorithms,this paper puts forward an improved algorithm named AdaBoostFISP.It uses fixed increment single sample perceptron as weak learners for AdaBoost,and applies fixed increment instead of variable increment in weight updata of perceptron,so that the complexity of time and learning is decreased.Experimental results demonstrate that the algorithm achieves better performance in prediction accuracy,learning complexity and time complexity compared with other AdaBoost algorithms.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第15期188-190,共3页 Computer Engineering
关键词 感知器 固定增量 AdaBoostFISP算法 perceptron fixed increment AdaBoostFISP algorithm
  • 相关文献

参考文献3

  • 1Lee Y J,Hsieh W F,Huang C M.ε-SSVR:A Smooth Support Vector Machine for ε-insensitive Regression[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(5):5-22.
  • 2Freund Y,Schapire R E.A Decision Theoretic Generalization of On-line Learning and an Application to Boosting[J].Computer and System Sciences,1997,55(1):119-139.
  • 3李国正,王猛,曾华军.支持向量机[M].北京:电子工业出版社,2004.18.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部