摘要
研究求解零残差非线性最小二乘问题的算法。给出了保证Gauss-Newton法恰2阶收敛的条件,在此基础上构造了利用条件预化共轭梯度法求解Gauss-Newton方程的新的有效算法。新算法与传统的使用Choleski技术的Gauss-Newton法具有相同的收敛速率,但在求解Gauss-Newton方程组时减少了代数运算的计算量。如维数n=200时,其计算量大体可减少35%,且当n趋于无穷时,两者的计算量之比以In2/Inn的速度趋于零。
The methods to solve the nonlinear least squares problem with zero vesidual arediscussed. A sufficient condition ensuring the Gauss-Newton method quadraticallyconvergent exactly is given. Based on it, a new efficient implementation of preconditionedconjugate gradient is put forward to solve the Gauss-Newton equation and save the cost oncomputation with the same exactly quadratic convergence to the traditional choleskifactorization. The ratio of computation will decrease 35% when n=200 and reduce to zero atthe rate of ln 2/ln n when n is infinite.
出处
《中国农业大学学报》
CAS
CSCD
北大核心
1999年第2期31-35,共5页
Journal of China Agricultural University
基金
国家自然科学基金