期刊文献+

基于高斯核密度估计的运动目标检测新方法 被引量:4

New Method for Moving Object Detection Based on Gaussian Kernel Density Estimation
下载PDF
导出
摘要 针对传统的核密度估计在运动目标检测中需要进行复杂的运算,并且背景模型无法自适应更新等问题,提出了基于关键帧采样的核密度估计背景建模算法。结合间隔视频序列的平均背景和相似性原理,提取具有关键背景信息的样本建立背景模型,大大缩短了背景建立的时间。同时引入融合背景更新策略,实现了背景的自适应更新,克服了光照变化对背景重建的影响。在此基础上,检测系统结合梯度和聚类消除了运动阴影。实验结果表明,该方法具有检测精度高,运行速度快等特点,更好地满足了实时性要求。 A kernel density estimation background model based on key sampling is presented in the moving object detection.A crucial background information samples,which is obtained by means background of interval sequence and pixel similarity theory,is employed to build background model for making the background of the establishment of the time significantly shortened.Meanwhile a fusion updating mechanism is applied for auto-updating background model,which overcame the light change on the background of the impact of the reconstruction.Moving shadow is then removed completely by combining of gradient and clustering method.Simulation experiment indicates that the proposed method has characteristics of strong precision and fast speed,and further increased real-time performance.
作者 孙剑芬
出处 《计算机技术与发展》 2010年第8期45-48,共4页 Computer Technology and Development
基金 国家"十一五"计划课题(FIB070335-B8-04)
关键词 核密度估计 关键帧 梯度 聚类 kernel density estimation key frame gradient clustering
  • 相关文献

参考文献12

二级参考文献70

  • 1刘志,杨杰,彭宁嵩.基于假设检验和区域合并的视频对象分割[J].数据采集与处理,2004,19(2):124-129. 被引量:7
  • 2侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 3GonzalezRC,WoodsRE.数字图像处理[M].第2版.北京:电子工业出版社,2004.
  • 4Kim C, Hwang J N. Fast and automatic video object segmentation and tracking for content based applications. IEEE Trans on Circuits and Systems for Video Technology, 2002,12 (2): 122-129
  • 5Wei Wei,Ngan K N, Habili N. Multiple feature clustering algorithm for automatic video object segmentation//Acoustics, Speech,and Signal Processing (ICASSP'04). 2004,3:17-21
  • 6Cover T M,Thomas J A. Elements of Information Theory. John Wiley and Sons, 1991
  • 7Belongie S, Carson C, Greenspan H, et al. Color and texture-based image segmentation using EM and its application to content based image retrieval//Proc, of the Int. Conference on Computer Vision. 1998 : 675-682
  • 8Greenspan H , Goldberger J , Mayer A. Probabilistic space time video modeling via piecewise GMM[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004,26 (3) : 384-396
  • 9Gharvi H , Mills M. Block - matching motion estimation algorithms new results. IEEE Trans on Circuits and Systems, 1990, 37(5):649-651
  • 10Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real - time video[C]//In: Proe IEEE. Workgroup on Applications of Computer Vision. Princeton, NJ:[s. n. ],1998:8-14.

共引文献123

同被引文献32

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部