期刊文献+

双曲线上任意一点与两焦点所成三角形面积问题的讨论

下载PDF
导出
摘要 题目:已知点M是双曲线x^2/4-y^2=1上的一点,F1.F2为两焦点,若∠F1MF2=90°,求△F1MF2的面积. 分析:由双曲线x^2/4-y^2=1,知a=2,b=1,c=√5.设|MF1|=t1,|MF2|=t2.由椭圆的定义得|MF1|-|MF2|4,即|t1-t2|=4,(t1-t2)^2=4^2,t1^2+t2^2-2t1t2=16.
作者 张建
机构地区 兰州市第四中学
出处 《甘肃教育》 2010年第15期61-61,共1页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部