期刊文献+

基于决策图贝叶斯的盲源信号分离算法

Blind source separation based on Bayesian optimization algorithm with decision graphs
下载PDF
导出
摘要 从混合观测数据向量中恢复不可观测的各个源信号是阵列处理和数据分析的一个典型问题。提出了一种基于决策图贝叶斯的盲源信号分离算法,该算法利用决策图贝叶斯优化算法代替JADE算法中的联合对角化操作,通过构造和学习网络来替代传统遗传算法中的交叉重组和变异等遗传算子,避免了对大量控制参数和遗传算子的人工选择和重要构造块的破坏。仿真结果表明,提出的算法比JADE算法和基于遗传算法的盲源信号分离方法均具有更高的分离精度。 Recovering the unobserved source signals from their mixtures is a typical problem in array processing and data analysis.In this paper,a blind source separation algorithm using Bayesian optimization algorithm with decision graphs is proposed,which uses Bayesian optimization algorithm with decision graphs instead of the joint diagonalization operation in JADE to improve the accurateness of the solutions.The suggested algorithm replaces some genetic operators such as crossover and mutation in traditional genetic algorithms by building and learning Bayesian networks,which avoids setting a lot of parameters manually and destroying some important building blocks.The analysis and simulations suggest that the algorithm has a higher separation accuracy than JADE algorithm and blind source separation based on GA.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第23期132-134,184,共4页 Computer Engineering and Applications
基金 湖南省自然科学基金No.09JJ6097 湖南省教育厅科研项目(No.07C386)~~
关键词 盲源信号分离 联合对角化(JADE) 独立分量分析 决策图贝叶斯优化算法 Blind Source Separation Joint Diagonalization Independent Component Analysis Bayesian optimization algorithm with decision graphs
  • 相关文献

参考文献13

  • 1Jutten C, Herault J.Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture[J].Signal Processing, 1991,24(1) : 1-10.
  • 2Comon P, Jutten C, Herault J.Blind separation of sources, Part II: Problems statement[J].Signal Processing, 1991,24( 1 ) : 11-20.
  • 3Comon P.Independent component analysis, a new concept[J].Signal Processing, 1994,36:287-314.
  • 4Cichocki A, Unbehauen R, Moszczynski R.A new on-line adaptive learning algorithm for blind separation of source signals[C]// Proc ISANN'94,1994:406-411.
  • 5Armari S, Cardoso J F.Blind source separation semipara metric statistical approach[J].IEEE Transactions on Signal Processing, 1997,45( 11 ) :2692-2700.
  • 6Cerdoso J F, Lafeld B.Equivariant adaptive source separation[J]. IEEE Transactions on Signal Processing, 1996,44(9) :3017-3029.
  • 7Pham D T, Cardoso J.Blind separation of instantaneous mixtures of nonstationary sources[J].IEEE Transactions on Signal Processing,2001,49(9) : 1837-1848.
  • 8陈卫东,舒柏晛.基于递阶遗传算法的未知源信号个数盲信号分离[J].计算机应用,2009,29(6):1499-1501. 被引量:1
  • 9姚玉钦.一种基于逼近线性空间的盲信号分离方法[J].通信技术,2009,42(3):43-44. 被引量:3
  • 10易叶青,林亚平,林牧,李小龙,王雷.基于遗传算法的盲源信号分离[J].计算机研究与发展,2006,43(2):244-252. 被引量:4

二级参考文献61

  • 1JIBing,ZHANGDe,JIXiaoyon.A novel audio watermarking scheme using multiscale wavelet modulation[J].Progress in Natural Science:Materials International,2004,14(8):664-669. 被引量:3
  • 2冶继民,张贤达,朱孝龙.信源数目未知和动态变化时的盲信号分离[J].中国科学(E辑),2005,35(12):1277-1287. 被引量:20
  • 3吕齐,朱孝龙,张贤达.卷积盲信号分离的非线性PCA方法[J].清华大学学报(自然科学版),2006,46(4):492-494. 被引量:6
  • 4HERAULT J, JUTI'EN C. Blind separation of sources - Part I: An adaptive algorithm based on neuromimetic architecture [ J]. Signal Processing, 1991, 24(1) : 1 - 10.
  • 5COMON P. Independent component analysis, a new concept [ J]. Signal Processing, 1994, 36(3): 287-314.
  • 6BELL A J, SEJNOWSKI T J. An information-maximization approach to blind separation and blind deconvolution [ J]. Neural Computation, 1995, 7(6) : 1129 - 1159.
  • 7AMARI S, CICHOCKI A, YANG H H. A new learning algorithm for blind signal separation [ EB/OL]. [2008 - 10 - 10]. http:// citeseerx.ist. psu. edu/viewdoc/summary?doi = 10.1.1.40. 1433.
  • 8HYVARINEN A, OJA E. A fast fixed point algorithm for independent component analysis[ J]. Neural Computation, 1997, 9(7): 1483 - 1492.
  • 9[1]Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbor: Michigan Press, 1975
  • 10[2]Goldberg D E. Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley, 1989

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部