摘要
利用混沌信号的有界性,集员广义LMS(SM-GLMS)算法成功用于混沌通信中的盲信道辨识。进一步将其应用于时变信道的盲辨识,分析了该算法的收敛性能,并提出了一种新的基于时变衰减因子的GLMS(VFF-GLMS)算法。结果表明VFF-GLMS和SM-GLMS算法性能相当,并且比常规的GLMS算法具有更好的稳态性能和时变参数跟踪能力。
With the boundedness of chaotic signal the Set-Membership Generalized Least Mean Square(SM-GLMS) algorithm has been successfully used to blind channel equalization in chaotic communications.In this paper,the SM-GLMS is further applied to time-varying channel identification and its convergence property is also justified,finally a novel GLMS algorithm with Variable Forgetting Factor(VFF-GLMS) is proposed.Simulation results show that the performance of VFF-GLMS is comparable with that of SM-GLMS.In comparison with conventional GLMS algorithm both of them provide significant improvement in terms of steady state performance and tracking ability to the variation of channel parameters.
出处
《计算机工程与应用》
CSCD
北大核心
2010年第23期151-153,158,共4页
Computer Engineering and Applications
基金
国家自然科学基金No.60572027~~
关键词
盲辨识
集员
最小均方(LMS)
混沌
时变信道
blind identification
set-membership
Least Mean Square(LMS)
chaos
time-varying channel