期刊文献+

利用粒子群优化估计高光谱数据协方差矩阵

Covariance estimation of hyperspectral data using particle swarm optimization
下载PDF
导出
摘要 与传统的多光谱遥感相比,高光谱遥感具有更高的光谱分辨率,能更好地进行地物分类识别。但是,当训练样本数与数据维数相当,或小于后者时,会导致协方差矩阵近似奇异或奇异,使得经典最大似然分类失效,需要对协方差矩阵进行修正。典型的协方差阵估计方法往往只选取总体协方差、类别协方差及其相应变形中的两种形式进行组合,未考虑多种形式共同对协方差阵估计的影响。提出将PSO算法应用到协方差阵估计中,考虑所有形式的共同作用,对组合参数进行优化。最后,通过高光谱数据的分类实验证明了方法的可行性和有效性。 Compared with the multispectral remote sensing,the hyperspectral remote sensing can provide data with higher spectral resolution,and so more accurate classification of land cover is usually achieved.However,when the number of the training sample is equal with or less than the data dimension,the covariance matrices are close to singular or badly scaled and thus the maximum likelihood classifier will be degraded.The re-estimation of covariance matrices is necessary.Most meth-ods of covariance estimation only select any two weighted items among the common covariance matrix,sample covariance matrix and their corresponding transforms,with ignorance of more combined items and their effects.Particle Swarm Optimiza-tion(PSO) is introduced to estimate covariance matrix.It investigates all the items through optimizing the weighting parameters.The classification results of hyperspectral data demonstrate that the proposed method is effective.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第23期203-205,230,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.40771145 高等学校博士点基金(No.20070280011) 气象行业专项项目(No.GYHY20070628)~~
关键词 高光谱数据分类 有限训练样本 协方差矩阵估计 粒子群优化算法(PSO) hyperspectral data classification limited training samples covariance matrix estimation Particle Swarm Optimiza-tion(PSO)
  • 相关文献

参考文献4

  • 1Dai D, Yuen P C.Face recognition by regularized discriminant analysis[J].IEEE Transactions on Systems,Man,and Cybernetics, 2007,37(4) : 1081-1082.
  • 2Kuo B C, Landgrebe D A.A covariance estimation for small sample size classification problems and its application to feature extraction[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(4) : 814-819.
  • 3Kuo B C, Landgrebe D A.Regularized covariance estimators for hyperspectral data classification and its application to feature extraction[C]//IEEE Geoscience and Remote Sensing Symposium,Toronto Canada,June 2002.
  • 4雷秀娟,史忠科.粒子群优化算法在函数优化中的应用及参数分析[J].计算机工程与应用,2008,44(28):53-54. 被引量:6

二级参考文献4

  • 1Shi Y H,Eberhart R C.Parameter selection in particle swarm optimization[C]//Evolutionary Programming VII:Proc EP98.New York: Springer-Verlag, 1998 : 591-600.
  • 2Eberhart R C,Shi Y H.Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation,San Diego, CA, 2000: 84-88.
  • 3Shi Y H,Eberhart R C.Empirical study of particle swarm optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation.Washington D C, Piscataway, NJ :IEEE Service Center, 1999 : 1945-1950.
  • 4Clerc M.The swarm and the queen:towards a deterministic and adaptive particle swarm optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation.Washington D C,Piscataway,NJ:IEEE Service Center,1999 :1951-1957.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部