期刊文献+

基于智能手机的人行横道红绿灯自动识别 被引量:9

Automatic recognition of traffic light signals on crosswalk based on moble phone
下载PDF
导出
摘要 鉴于目前绝大部分人行横道红绿灯没有配合声音提示,利用带摄像头的智能手机,通过人行横道红绿灯的自动识别技术将大大提高盲人过马路的安全系数。提出一个融合级联Adaboost与颜色过滤的人行横道红绿灯自动识别算法。该方法首先利用AdaBoost算法对红绿灯位置进行检测;然后在HSI色彩模型的色调子空间进行颜色分析的基础上进行红绿灯的过滤与分类。用采集的418幅实际复杂场景下的图像数据进行实验,结果表明该方法能达到较好的检测效果。 Whereas the majority of traffic lights for crosswalks aren't equipped with sound alarm system,automatic recognition of traffic light signals on crosswalk will greatly improve the safety of the blind crossing the road,using moble phone with a camera.Integrating cascade Adaboost and color filtration,this paper puts forward an automatic identification calculating method for the traffic lights on pedestrian crossing.Firstly,the method uses Adaboost calculation to detect the location of traffic lights.Then,the red lights and green lights will be filtered and classified based on the color analysis in the hue subspace of HSI color model.The experiments on the 418 images of actual complex scene show that this calculating method has achieved great success.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第23期219-222,共4页 Computer Engineering and Applications
关键词 红绿灯交通标志 道路交通标志识别 图像检测 traffic lights traffic sign recognition image detection
  • 相关文献

参考文献9

  • 1黎冰,吴松,曾凡涛.人脸识别在智能手机中的实现[J].计算机工程,2006,32(7):272-274. 被引量:5
  • 2Gao X,Podladchikova L, Shaposhnikov D,et al.Recognition of traffic signs based on their colour and shape features extracted using human vision models[J].Journal of Visual Communication and Image Representation,2006,17(4):675-685.
  • 3Escalera A de la,Armingol J M,Mata M.Traffic signrecognition and analysis for intelligent vehicles[J].Imageand Vision Computing, 2003,21 (3) : 247-258.
  • 4Torresen J, .Bakke J W, Sekanina L.Efficient recognition of speed limit signs[C]//Proceedings.The 7th International iEEE Conference on intelligent Transportation Systems, 2004:652-656.
  • 5Lafuente-Arroyo S, Gil-Jimenez P, Maldonado-Bascon R, et al. Traffic sign shape classification evaluation I: SVM using distance to borders[C]//Proceedings of IEEE Intelligent Vehicles Symposium(IV) ,2005 : 557-562.
  • 6马腾飞,郑永果,赵卫东.基于边缘检测与Hough变换的车牌字符分割算法[J].系统仿真学报,2006,18(z1):391-392. 被引量:15
  • 7Soetedjo A, Yamada K.Fast and robust traffic sign detection[J]. IEEE Systems, Man, and Cybernetics Society, 2005 : 1341-1346.
  • 8Soetedjo A,Yamada K.Traffic sign classification using ring partitioned method[J].IEICE Trans Fundam Electron Commun Comput Sci,2005,E88-A(9) :2,$19-2426.
  • 9朱双东,张懿,陆晓峰.三角形交通标志的智能检测方法[J].中国图象图形学报,2006,11(8):1127-1131. 被引量:33

二级参考文献15

  • 1凌彤辉,黄山,王新增,王鉴.车牌字符分割算法的研究[J].中国测试技术,2005,31(1):41-43. 被引量:11
  • 2董慧颖,曹仁帅.汽车牌照自动识别系统中字符分割算法研究[J].沈阳工业学院学报,2003,22(4):1-3. 被引量:7
  • 3吴进军,杜树新.车牌字符分割新方法[J].工业控制计算机,2005,18(4):69-70. 被引量:6
  • 4刘庆祥,胡迎春.智能车牌识别系统中字符图像分割技术的研究[J].长江大学学报(自然科学版),2005,2(1):65-67. 被引量:5
  • 5[2]Yu Zhong,Kalle Karu.Locating Text in Complex Color Images[J].Pat-tern Recognition (S0031-3203),1995,28(10):1523-1535.
  • 6[3]S.Draghici.A Neural Network based Artificial Vision System for License Plate Recognition[J].Int.J.on Neural Systems (S0129-0657),1997,8(1):113-126.
  • 7肖距雄 翁铁成 宋中庆.USB技术及应用设计[M].清华大学出版社,2003..
  • 8陈章龙.嵌入式技术与系统-Intel XScale结构与开发[M].北京:北京航空航天大学出版社,2003.
  • 9Gong Y,Sakauchi M.Detection of Regions Matching Specified Chromatic Features[J].Computer Vision and Image Understanding,1995,61(2):263-269.
  • 10朱双东.ITS中的图象测量及其处理技术[A].见:2000年计量测试学术交流会论文集[C],北京,2000:512~516.

共引文献50

同被引文献58

引证文献9

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部