期刊文献+

大输液在线视觉检测系统的研究 被引量:4

Research on on-line visual system to detect transfusion solution
下载PDF
导出
摘要 针对传统灯检检测精度低,人力成本高的问题,研究了基于机器视觉的大输液中可见异物在线检测系统的关键技术。利用高速旋转装置,获取运动目标的序列图像。根据图像间的交互方差系数MV建立序列图像的背景,利用背景差分提取检测目标。综合质心迭代算法和卡尔曼滤波器实现了运动目标的跟踪,根据运动轨迹方向确定可见异物是否存在,排除气泡的干扰。实验结果表明该系统能够有效地实现大输液中可见异物的实时检测功能。 With regard to the problems of low detection accuracy and high labor cost in the traditional detection,key technologies of an on-line system to detect foreign substances based on machine vision are studied.The system employs high-speed rotational devices to obtain the sequential images of moving targets.According to Mutual Variance(MV) parameter between images,the background of sequential images is set up.By subtracting the background,inspected objects are extracted.Combining centroid iteration algorithm with Kalman filter realizes tracking motional particles.By means of the direction of targets'motion tracks,whether visible foreign substances exited are determined and the disturbance of bubbles is eliminated as well.The experiments demonstrate that the system could fulfill the real-time detection of visible foreign substances in transfusion.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第23期231-234,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60835004 国家高技术研究发展计划(863)No.2007AA04Z244~~
关键词 机器视觉 图像差分 KALMAN滤波器 质心迭代算法 大输液检测 machine vision image differences Kalman filter centroid iteration algorithm transfusion detection
  • 相关文献

参考文献7

二级参考文献44

共引文献794

同被引文献22

  • 1刘飞,张鹏林.基于卡尔曼滤波的时间序列影像背景估计[J].地理空间信息,2005,3(3):12-13. 被引量:5
  • 2GONZALEZ R C,WOOD R E. 数字图像处理[M].2 版. 北京: 电子工业出版社,2007:175.
  • 3汪小澄,万乐,刘新,唐琳娜,戴琳.数字图像处理技术在瓶装液检测中的应用[J].微计算机信息,2007,23(05X):269-271. 被引量:2
  • 4Lu Juan, Wang Yaonan, Zhang Jie, et al. On-line detec- tion of foreign substances in glass bottles filled with trans-fusion solution through computer vision[c]. Proceedings of the 2005 IEEE International Conference on Information and Automation, Zhangjiajie,China. New York: IEEE Press, 2008.
  • 5COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(5):564-577.
  • 6NING J,ZHANG L, ZHANG D,et al. Robust object track- ing using joint color-texture histogram[J]. International Journal of Pattern Recognition and Artificial Intelligence,2009,23(7):1245-1263.
  • 7lshii A,Mizuta T,Todo S.Detection of foreign substanc- es mixed in a plastic bottle ofmedicinal solution using real-time video image processing[C]//Fourteenth lnterna- tional Conference on tralia.New York:IEEE Pattern Recognition, Brisbane Aus- Press, 1998,2 : 1646-1650,.
  • 8Grindinger H. Neusser H, Seidenader N, ct al.Product Testing Apparatus US : 20050117149[P].2005-07-02.
  • 9Lu Juan, Wang Yao-nan, Zhang Jie, et al.On-line detec- tion of foreign substances in glass bottles filled with transfusion solution through computer vision[C]//Pro- ceedings of the 2008 IEEE International Conference on Information and Automation,Zhangjiajie, China.New York: IEEE Press, 2008: 424-429.
  • 10Comaniciu D, Ramesh V, Meer P.Kemel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5) :564-577.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部