期刊文献+

基于随机游走的医学超声图像分割 被引量:1

Medical ultrasound image segmentation based on random walks
下载PDF
导出
摘要 医学超声图像不可避免地存在斑点噪声、弱边界等问题,很难达到满意的分割效果。随机游走算法对噪声具有鲁棒性,对弱边界有良好的提取能力。将此算法应用于医学超声图像分割,通过融合区域信息与用户指定的种子点信息,借助于电路模拟以及组合Dirichlet问题,可以得到每个非种子点到标记了目标点或者背景点的概率,并对其赋予概率中最大的种子点所对应的标记,从而实现图像的分割。实验结果表明,该方法对医学超声图像的分割是有效的。此算法通过求解稀疏的、对称的、正定的线性方程的系统来获得Dirichlet问题的解,使计算速度大为提高。 Owing to the inevitable drawback of speckle noise and weak boundaries in the medical ultrasound images,it is quite difficult to accomplish satisfied segmentation results.The algorithm of random walks is robust to the noise and the fine extracting ability to weak boundary,this paper will apply it to the medical ultrasound image segmentation,merging the information of region and seed points designated by user,with the aid of circuit simulation and combinatorial Dirichlet problem to calculate the probabilities of each of the unseeded points in the image to the seed points of object or background and label the pixel with the maximum probability to it to carry out the segmentation of image.Experiments show that this method can be effective to the segmentation of medical ultrasound images.And in the algorithm,the solution to Dirichlet problem may be computed analytically by solving a sparse,symmetric,positive-definite system of linear equations.So the computing speed is largely improved.
作者 于佳丽 郭敏
出处 《计算机工程与应用》 CSCD 北大核心 2010年第23期241-243,共3页 Computer Engineering and Applications
基金 陕西省自然科学基金No.2005A12~~
关键词 随机游走 医学超声图像 图像分割 random walks medical ultrasound image image segmentation
  • 相关文献

参考文献9

二级参考文献41

  • 1Wang L T,Infrared patient positioning for stereo-tactic radiosurgery of extracranial tumors[J].Computers in Biology arid Medicine,2001,31:101-111.
  • 2Meeks SL,Bove FJ.Irled-based patient localization for linac radiosurgery-a preliminary report[J].Int J Radiation Oncology Biol Phys,1998,41 (2):433-439.
  • 3Verellen D,Quality assurance of a system for improved target localization and patient set-up that combines real-time infrared tracking and stereoscopic X-ray imaging[J].Radiotherapy and Oncology,2003,67:129-141.
  • 4Kass M,Witkin A,Terzopoulos D.Snakes:active contour models[J].International Journal of Computer Vision,1987,1:321-331.
  • 5Xu Chenyang,Prince J L.Snakes,shape,and gradient fector flow[J].IEEE Transactions on Image Processing,1998,7(3):359-369.
  • 6Xu Chonyang,Prince J L.Goneralized gradient vector flow external forces for active contours[J].Signal Processing,1998,17:131-139.
  • 7Ma Yi-de,Qi Chun-liang.Study of sutomated PCNN system based on genetic algorithm[J].Jonrnal of System Simulation,2005,18(3):722 -725.
  • 8Candoso JS,Luls CR.Toward a generic evaluation of image segmentation[J].IEEE Transactions on Image processing,2005,14(11):1773 -1782.
  • 9[1]G.S.Mintz,S.E.Nissen,W.D.Anderson,et al.ACC clinical expert consensus document on standards for the acquisition,measurement and reporting of intravascular ultrasound studies:a report of the American College of Cardiology task force on clinical expert consensus documents.J.Am.Coll.Cardiol.,vol.37,pp.1478-1492,2001.
  • 10[2]S.E.Nissen and P.Yock.Intravascular ultrasound:novel pathophysiological insights and current clinical applications.Circulation,vol.103,pp.604-616,2001.

共引文献9

同被引文献14

  • 1罗诗途,张玘,罗飞路,王艳玲.基于粗糙集理论的图像分割智能决策方法[J].中国图象图形学报,2006,11(1):66-73. 被引量:9
  • 2Grady L.Random walks for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(11):1768-1783.
  • 3Grady L,Funka-lea G.Multi-label image segmentation for medical applications based on graph-theoretic electrical potentials[C]//Lecture Notes in Computer Science,Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis.Berlin:Springer Berlin/Heidelberg,2004:230-245.
  • 4Grady L,Schiwietz T,et al.Random walks for interactive organ segmentation in two and three dimensions:Implementation and validation[C]// Proceedings of the Medical Image Computing and Computer-Assisted Intervention.Berlin:Springer Berlin /Heidelberg,2005:773-780.
  • 5Doyle P,Snell J.Random Walks and Electric Networks[M].Ann Arbor:The Mathematical Association of America,1984.
  • 6Mallat S G.A theory for multi resolution signal decomposition:The wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
  • 7Liu Juan,Moulin P.Information theoretic analysis of inter-scale and intra-scale dependencies between image wavelet coefficients[J].Transactions on Image Processing,2001,10(11):1647-1658.
  • 8许存禄,高佳,武国德.Chan-Vese模型下的脑肿瘤图像分割方法[J].计算机工程与应用,2010,46(9):155-158. 被引量:8
  • 9许兴明,赵海峰,罗斌.基于t-混合模型的脑MR图像白质分割[J].计算机工程与应用,2010,46(17):191-193. 被引量:3
  • 10车娜,车翔玖,高占恒,王钲旋.基于局部熵最小化的核磁共振脑图像二次分割算法[J].计算机研究与发展,2010,47(7):1294-1303. 被引量:4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部