期刊文献+

基于不变流形的FAST TCP参数选择方法

FAST TCP Preference Method Based on Invariant Manifolds
下载PDF
导出
摘要 在各路径FAST TCP连接到达服从泊松过程、传送文件长度服从指数分布和瓶颈链路处于重流量服务强度的条件下,利用含有各路径FAST TCP连接平均逗留时间的Lyapunov函数,证明了若处于不变流形状态,则各路径活跃FAST TCP连接平均逗留时间最短,并且在有限的时间内系统可到达该不变流形。针对FAST TCP采用静态映射表确定协议参数α的缺陷,按照降阶的不变流形中连接数和协议参数的关系,提出了一种在慢时间尺度比例下根据连接数期望值和不变流形迭代搜索协议参数的方法。NS-2仿真结果表明该方法是有效的。 When each route FAST TCP connections were assumed Poisson arrival and exponentially distributed document sizes, a Lyapunov function including FAST TCP connection's lingering time was constructed to prove that each route connection lingering time was shortest at the invariant manifolds under the heavy traffic service intensity, and to prove that the invariant manifolds were reached in a finite time. Aiming at the weakness of FAST TCP static mapping protocol parameter method, according to the relation between connection numbers and the protocol parameter in reduced order invariant manifolds, a slow timescale iterative search protocol parameter method based on the expected connection numbers and invariant manifolds was proposed. NS-2 simulationresults were presented to verify the effectiveness of this method.
出处 《计算机科学》 CSCD 北大核心 2010年第8期124-128,共5页 Computer Science
基金 国家广东省联合基金(U0735003) 国家自然科学研究基金项目(60604006) 茂名学院自然科学研究基金资助
关键词 参数选择 不变流形 重流量 服务强度 流模型 逗留时间 Preference, Invariant manifolds, Heavy traffic, Service intensity, Fluid model, Lingering time
  • 相关文献

参考文献10

  • 1Wei D X,Jin Cheng,Low S H.FAST TCP:Motivation,Architecture,Algorithms,Performance[J].IEEE Trans on Networking,2006,14(6):1246-1259.
  • 2Koo Kyungmo,Choi Joon-Young,Lee J S.Parameter Conditions for Global Stability of FAST TCP[J].IEEE Communications Letters,2008,12(2):155-157.
  • 3Wang Jiantao,Wei D X,Low S H.Modeling and Stability of FAST TCP[C] ∥Proc.IEEE INFOCOM.Miami,FL,USA,2005:938-948.
  • 4Tang Ao,Low S H.An Accurate Link Model and Its Application to Stability Analysis of FAST TCP[C] ∥Proc.IEEE INFO COM.Anchorage,Alaska,USA,2007:161-169.
  • 5Jacobsson K.Dynamic modeling of internet congestion control[D].Royal Institute of Technology (KT H),Sweden,2008.
  • 6Kelly F P,Williams R J.State Space Collapse and Diffusion Approximation for a Network Operating Under a Fair Bandwidth Sharing Policy[J].The Annals of Applied Probability,2007,11(3):1055-1083.
  • 7Bonald T,Massoulie L.Impact of fairness on Internet performace[C] ∥Proc.Acm Sigmetrics.Camibridge,Massachu setts,USA,2001:82-91.
  • 8郭克敏,李清都.一种改进的不变流形算法[J].重庆邮电大学学报(自然科学版),2008,20(2):221-224. 被引量:4
  • 9宋丽华,陈鸣,张睿.一种基于测量的TCP Fast改进方案[J].北京邮电大学学报,2005,28(4):27-31. 被引量:6
  • 10宋丽华,王海涛,陈鸣.基于网络测量和模糊控制技术的拥塞控制机制[J].华南理工大学学报(自然科学版),2006,34(6):89-94. 被引量:6

二级参考文献34

  • 1张轶博,雷振明.一种被动式RTT测量算法[J].北京邮电大学学报,2004,27(5):85-89. 被引量:10
  • 2李清都,杨晓松.二维不稳定流形的计算[J].计算物理,2005,22(6):549-554. 被引量:10
  • 3[1]ALEXANDER N Gorban,ILIYA V Karlin.Method of in-variant manifold for chemical kinetics[J].Chemical Engi-neering Science,2003,58(21):4751-4768.
  • 4[2]FRASER S J.The steady state and equilibrium approxi-mation:A geometrical picture[J].Journal of Chemical Physics,1988,8:4732-4738.
  • 5[3]CHIANG H D,HIRSCH M W,WU F F.Stability region of nonlinear autonomous dynamical systems[J].IEEE Trans Automat Contr,1998,33(1):16-27.
  • 6[4]JOHSON M E,JOLLY M S,KEVEREKIDIS I G.Two-dimensional invariant manifolds and global bifuracations:some approximation and visualization studies[J].Numeri-cal Algorithms,1997,14(1-3):125-140.
  • 7[5]BRODZIK M L.The computation of simplicial approxima-tions of implicitly defined p-dimensional manifolds[J].Computers and Mathematics with Applications,1998,36(6):93-113.
  • 8[6]DELLNITZ M,HOHMANN A.A subdivision algorithm for the computation of unstable manifolds and global attract-ors[J].Numeriche Mathematik,1997,75 (3):293-317.
  • 9[7]LUST K.Improved numerical Floquet multipliers[J].Int.J Bifurcation and Chaos.2001,11 (9):2389-2410.
  • 10[8]DOEDEL E J,KELLER H B,KERNEVEZ J P.Numerical analysis and control of bifurcation problems:I[J].Int.J.Bifurcation and Chaos.1991,1:493-520.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部