期刊文献+

基于相对密度的数据流模糊聚类算法 被引量:2

Data Stream Fuzzy Clustering Algorithm Based on Relative Density
下载PDF
导出
摘要 提出的基于相对密度的数据流模糊聚类算法结合了相对密度聚类和模糊聚类的优点,能形成任意形状、多密度分辨率的层次聚类结果。同时,利用微簇空间位置重叠关系,定义了微簇集合间的差运算,从而有效地支持了用户指定时间窗口内的数据流聚类要求。通过与CluStream算法在聚类质量和处理时间两个方面的比较分析,发现基于相对密度的数据流模糊聚类算法具有明显的优势。 This paper provided a relative density based data stream fuzzy clustering algorithm which inherits the advantages of relative density based clustering and fuzzy clustering, so it can discover arbitrary-shape and multi-resolution clusters. With the subtraction operator on the set of micro-clusters which is defined according to the spatial overlapping relations among micro-clusters, this algorithm can do clustering on any user-specified data stream window. Compared with CluStream algorithm on the two areas of clustering quality and processing time, this algorithm demonstrates a clear advantage.
出处 《计算机科学》 CSCD 北大核心 2010年第8期194-197,共4页 Computer Science
基金 国家自然科学基金项目:模糊 动态多维数据建模理论与方法研究(70771110)资助
关键词 多分辨率聚类 模糊聚类 数据流 相对密度 Multi-resolution clustering,Fuzzy clustering,Data stream,Relative density
  • 相关文献

参考文献8

  • 1Aggarwal C,Han J,Wang J,et al.A framework for clustering evolving data streams[C] ∥Proc.of VLDB.2003:81-92.
  • 2Aggarwal C,Han J,Wang J,et al.A framework for projected clustering of high dimensional data streams[C] ∥Proc.2004 Int.Conf.Very Large Data Bases (VLDB'04).Toronto,Canada,2004,8:852-863.
  • 3Cao F,Martin E,Qian W,et al.Density-based Clustering over an Evolving Data Stream with Noise[C] ∥Proc.of the 2006 SIAM Conference on Data Mining (SDM'2006).2006.
  • 4Liu Qing-Bao,Deng Su,Lu Chang-Hui,et al.Relative density based K-nearest neighbors clustering algorithm[C] ∥Proc.2003 Int.Conf.on Machine Learning and Cybernetics.2003:133-137.
  • 5朱蔚恒,印鉴,谢益煌.基于数据流的任意形状聚类算法[J].软件学报,2006,17(3):379-387. 被引量:51
  • 6刘青宝,戴超凡,邓苏,张维明.基于网格的数据流聚类算法[J].计算机科学,2007,34(3):159-161. 被引量:10
  • 7刘青宝,何勇,邓苏,张维明.基于相对密度的多分辨率聚类算法[J].小型微型计算机系统,2007,28(7):1287-1292. 被引量:4
  • 8刘青宝,金燕,邓苏,张维明.基于模糊聚类的属性匹配算法[J].模糊系统与数学,2006,20(6):96-102. 被引量:12

二级参考文献49

共引文献68

同被引文献13

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2朱蔚恒,印鉴,谢益煌.基于数据流的任意形状聚类算法[J].软件学报,2006,17(3):379-387. 被引量:51
  • 3周晓云,孙志挥,张柏礼,杨宜东.高维数据流聚类及其演化分析研究[J].计算机研究与发展,2006,43(11):2005-2011. 被引量:9
  • 4刘青宝,邓苏,张维明.基于相对密度的聚类算法[J].计算机科学,2007,34(2):192-195. 被引量:13
  • 5Aggarwal C C, Han J, Wang J.A framework for projected clustering of high dimensional data streams [M]. Proceedings of the 30th In- ternational Conference on Very Large Data BaseS, Morgan Kaufmann,Toronto, Canada, 2004.
  • 6Gao J, Li J, Zhang Z.An incremental data stream clustering algorithm based on dense units detection[M]. Proceedings of the Ninth Pa- cific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science,Springer,2005.
  • 7Cao F,Ester M,Qian W.Density-based clustering over an evolving data stream with noise[M].J. Ghosh, D. Lambert, D.B. Skillicorn, J. Srivastava (Eds.), Proceedings of the Sixth SIAM International Conference on Data Mining, SIAM, Bethesda, Maryland, USA, 2006.
  • 8Bishop C M.Pattern Recognition and Machine Learning[M].Springer,2006.
  • 9Su MC,Ctlou CH.A modified version of the k-means algorithm with a distance based on cluster symmetry[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence,2001,23(6):674--680.
  • 10吴枫,仲妍,金鑫,吴泉源,贾焰,杨树强.滑动窗口内进化数据流任意形状聚类算法[J].小型微型计算机系统,2009,30(5):887-890. 被引量:6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部