期刊文献+

基于数学形态学的聚类集成算法 被引量:5

Clustering Ensemble Algorithm Based on Mathematical Morphology
下载PDF
导出
摘要 提出了基于数学形态学的聚类集成算法CEOMM。它利用不同的结构元素的探针作用,对不同的结构元素探测出来的簇核心图进行集成,在集成所得到的簇核心基础上聚类。实验结果表明,算法CEOMM对有复杂类形状的数据集进行聚类时,效果比传统聚类算法更好,且能确定聚类数。而且由于采用了不同的结构元素进行探测,对于由不同形状的类构成的数据集其聚类效果很理想。 In this paper, a clustering ensemble algorithm named CEOMM was proposed, which combines multiple clustering cores explored by different structure elements to get a desirable and correct clustering core of a data set. And then CEOMM gets the clustering of the data set based on the ensemble clustering core. Experimental results demonstrate CEOMM can cluster data with complex cluster shapes better than the classical clustering algorithms, and it can also find an optimal number of clusters. Moreover, CEOMM can discover overlapping clusters with different arbitrary shapes, because it uses different structure elements.
作者 罗会兰 危辉
出处 《计算机科学》 CSCD 北大核心 2010年第8期214-218,共5页 Computer Science
基金 国家973项目(No.2010CB327900) 国家自然科学基金(No.60303007) 上海科技发展基金(No.08511501703) 上海市智能信息处理重点实验室开放课题(No.IIPL-09-009)资助
关键词 聚类集成 数学形态学 结构元素 Clustering ensemble, Mathematical morphology, Structure elements
  • 相关文献

参考文献17

  • 1Breen E J,Jones R,Talbot H.Mathematical morphology:A useful set of tools for image analysis[J].Statistics and Computing,2000,10(2):105-120.
  • 2Matheron F.Random Sets and Integral Geometry[M].New York:John Wiley & Sons Inc,1975.
  • 3Serra J.Image Analysis and Mathematical Morphology[M].London:Academic Press,1984.
  • 4Gonzalez R C,Woods R E.Digital Image Processing (2nd Edition)[M].Prentice Hall,2002.
  • 5Mcreynolds D P,Lowe D G.Geodesic saliency of watershed contours and hierarchical segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,8(12):1174-1185.
  • 6Breen E J,Jones R,Talbot H.Mathematical morphology:A useful set of tools for image analysis[J].Statistics and Computing ,2000,10(2):105-120.
  • 7Postaire J G,Zhang R D,Lecocq-Botte C.Clustering analysis by binary morphology[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(2):170-180.
  • 8Starovoitov V.A clustering technique based on the distance transform[J].Pattern Recognition Letters,1996,17(3):231-239.
  • 9邸凯昌,李德仁,李德毅.从空间数据库发现聚类:一种基于数学形态学的算法[J].中国图象图形学报(A辑),1998,3(3):173-178. 被引量:10
  • 10Ferreira Costa J A,De Andrade Netto M L.Clustering of complex shaped data sets via Kohonen maps and mathematical morphology[C] ∥Proc.SPIE Data Mining and Knowledge Discovery:Theory,Tools,and Technology III.2001:16-27.

二级参考文献24

  • 1Frawley W. Piatesky-Shapiro G, Matheus C, Knowledge Discovery in Databases: An Overview,In Piatesky-Shapiro G. and Frawley W (Ed.), Knowledge Discovery in Databases, AAAI/MIT Press.
  • 2Platesky-Shapiro G.An Overview of Knowledge Discovery in Databases: Recent Progress and Challenges, In W. P. Ziarko(Ed.), Rough Sets, Puzzy Sets and Knowledge Discovery,Springer Verlag, 1994.
  • 3Han J. Data Mining Techniques. ACM-SIGMOD'96 Conf. Tutorial, June, 1996.
  • 4Koperski K. Adhihary J. Han J.Spatial Data Mining Progress and Challenges. SIGMOD'96 Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD'96),Montreal, Canada, June, 1996.
  • 5邸凯昌,李德仁.KDD技术及其在GIS中的应用与扩展.中国GIS协会第二届年会,北京,1996.
  • 6邸凯昌,李德仁,李德毅.空间数据发掘和知识发现的框架.第十届全国遥感技术学术交流会,青岛.1997.
  • 7Ester M.et al.A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, Proc. 2nd Int.Conf.on Knowledge Discovery and Data Mining, Portland,USA, 1996.
  • 8Ng R T.Han J. Efficient and Effective Clustering Methods for Spatial Data Mining, Proc. of the 20th VLDB Conf. Santiago.Chile, 1994.
  • 9Ester M. et al.A Database Interface for Clustering in Large Spatial Databases, Proc.1st Int. Conf. on Knowledge Discovery and Data Mining. Montreal, Canada, 1995.
  • 10Karypis G, Han E H, Kumar V. Chameleon: Hierarchical Clustering Using Dynamic Modeling. IEEE Computer, 1999, 32 (8): 68-75

共引文献36

同被引文献76

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部