期刊文献+

有环LDPC码的改进型LLR BP译码算法

Modified LLR BP Decoding Algorithm of LDPC Codes with Loops
原文传递
导出
摘要 长LDPC码的Tanner图中通常没有环路,此时LLR BP算法是性能最优的软判决译码算法。而短LDPC码的Tanner图中通常存在环路,因此变量节点之间的信息就不再相互独立,这时LLR BP算法的译码性能就会下降。提出一种改进型LLR BP算法,利用概率论和最小均方误差准则来计算该算法中的参数。仿真结果表明改进型LLR BP算法比LLR BP译码算法、Normalized BP算法以及Offset BP算法具有更好的LDPC译码性能。 The Tanner graph of long LDPC codes usually has no loops and LLR BP algorithm is the best soft-decision decoding algorithm.But the Tanner graph of short LDPC codes usually has loops,so the information within variable nodes isn't mutually independent and the decoding performance of LLR BP algorithm will decrease.A modified LLR BP algorithm is proposed.Parameters of the proposed algorithm are calculated according to probability theory and minimum mean square error rule.The simulation results show that the LDPC decoding performance of modified LLR BP algorithm is more effective than that of LLR BP algorithm,Normalized BP algorithm and Offset BP algorithm.
作者 张天瑜
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2010年第10期174-179,共6页 Journal of Wuhan University of Technology
关键词 LDPC码 TANNER图 围长 LLR BP算法 Normalized BP算法 OFFSET BP算法 改进型LLR BP算法 LDPC codes Tanner graph girth LLR BP algorithm Normalized BP algorithm Offset BP algorithm modified LLR BP algorithm
  • 相关文献

参考文献10

  • 1He Y J, Lau F C M, Tse C K. Study of Bifurcation Behavior of Two-dimensional Turbo Product Code Decoders[J]. Chaos, Solitons & Fractals, 2008,36 (2) : 500-511.
  • 2Chaikalis C. Implementation of a Reconfigurable Turbo Decoder in 3GPP for Flat Rayleigh Fading [J ]. Digital Signal Processing, 2008,18(2) : 189-208.
  • 3Dai Y M, Yan Z Y, Chen N. Optimal Overlapped Message Passing Decoding of Quasi-cyclic LDPC Codes[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2008,16(5) :565-578.
  • 4Zhang Y. Approaching V-BLAST Capacity with Adaptive Modulation and LDPC Encoding [ J ]. IEEE Transactions on Communications, 2007,52 (12) : 2261-2269.
  • 5Pishro-Nik H, Fekri F. Results on Punctured Low-density Parity-check Codes and Improved Iterative Decoding Techniques [J]. IEEE Transactions on Information Theory, 2007,53(2) : 599-614.
  • 6Brandon T, Hang R, Block G, et al. A Scalable LDPC Decoder ASIC Architecture with Bit-serial Message Exchange[J]. Integration, the VLSI Journal, 2008,41(3) : 385-398.
  • 7Xia S T, Fu F W. Minimum Pseudoweight and Minimum Pseudocodewords of LDPC Codes[J]. IEEE Transactions on Information Theory, 2008,54 ( 1 ) : 480-485.
  • 8Huo Yongqing Peng Qicong Shao Huaizong.Study of adaptive modulation and LDPC coding in multicarrier systems[J].Journal of Systems Engineering and Electronics,2008,19(1):39-45. 被引量:2
  • 9Howard S L, Gaudet V C, Schlegel C. Soft-bit Decoding of Regular Low-density Parity-check Codes[J]. IEEE Transactions on Circuits and Systems Ⅱ : Express Briefs, 2005,52(10) : 646-650.
  • 10Chen J, Dholakia A, Eleftheriou E. Reduced-complexity Decoding of LDPC Codes[J]. IEEE Transactions on Communications, 2005,53(8) : 1288-1299.

二级参考文献12

  • 1Ardakani M, Esmailian T, Kschischang F R. Near-capacity coding in multicarrier modulation systems. IEEE Trans. Commun., 2004, 52: 1880-1889.
  • 2Ming Lei, Harada H. Low-density parity-check(LDPC) coded ultra high-data-rate OFDM system in frequencyselective fading. IEEE VTC, 2005, 3: 1590-1594.
  • 3Chow P S, Cioffi J M, Bingham J A C. A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels. IEEE Trans. Commun., 1995, 43(2): 773- 775.
  • 4Fischer R F H, Huber J B. A new algorithm for discrete multitone transmission. Proc. IEEE GLOBECOM'96, London, 1996:724 -728.
  • 5Wyglinski A M, Kabal P, Labeau F. Adaptive bit and power allocation for indoor wireless multicarrier systems. Proc. 15^th Int. Conf. Wireless Communications, Calgary, AB, Canada, 2003:500- 508.
  • 6Bansal P, Brzezinski A. Adaptive loading in MIMO/OFDM systems, www.mit. edu/ brzezin/359/359.pdf, 2006-3-26.
  • 7Wyglinski A M, Labeau F, Kabal P. Bit loading with BER- constraint for multicarrier systems. IEEE Transcation on Wireless Communications, 2005, 4: 1383-1387.
  • 8Simon M K, Hinedi S M, Lindsey W C. Digital communication techniques. Englewood Cliffs, N J: PTR Prentice Hall, 1994: 912.
  • 9Gallager R G. Low-density parity-check codes. IRE Trans. on Info. Theory, 1962, 8: 21-28.
  • 10Mackay D J C, Neal R M. Good codes based on very sparse matrices. In Cr-uptography and Coding, 5^th IMA Conference, Colin Boyd, Ed., number1025 in Lecture Notes in Computer Science, Springer, Berlin, 1995: 100-111.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部