期刊文献+

主成分分析在地质样品分类与浓度预测中的应用研究 被引量:4

Study on Classification and Elemental ConcentrationPrediction of Geological Samples by Principal Component Analysis
下载PDF
导出
摘要 用主成分分析方法研究地质样品的X荧光光谱强度与浓度的关系,对未知样分类并预测样品浓度。对标准化后的数据计算各样品的主成分得分,根据得分分布图可快速分类样品。对训练样品作主成分回归分析,建立降维的主成分回归模型,用主元回归预测各组分浓度,效果好于多元回归分析方法。在标样较少的情况下,采用非线性组合增加维数的主元回归分析方法,比直接主元回归法的预测结果理想。 The relationship between concentration and Xray fluorescence intensity in geological samples was investigated by principal component analysis (PCA). The classification of these samples was performed by applying PCA to the standardized data and plotting the graph of their scores. Based on the plot of scores, a principal component regression model was built and applied to predict the concentration of major components in unknown geological samples. The results show that PCA method provides better results in predicting concentration of components in samples over the multi-component analysis method. If there are not enough standard samples, the prediction accuracy can be improved by combining simulative samples into the training set. The method can be applied to quantitative prediction of the element concentration in geological samples.\=\=
出处 《岩矿测试》 CAS CSCD 北大核心 1999年第2期97-100,共4页 Rock and Mineral Analysis
基金 地质行业科学技术发展基金
关键词 主成分分析 荧光光谱 地质样品 分类 浓度预测 principal component analysis Xray fluorescence spectrometry classification and element concentration prediction geological sample
  • 相关文献

参考文献8

二级参考文献8

共引文献19

同被引文献451

引证文献4

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部