期刊文献+

基于贝叶斯约束统计框架的DT-MRI脑白质纤维追踪成像 被引量:2

A Bayesian Constraint Stochastic Framework for DT-MRI White Matter Fiber Tractography
下载PDF
导出
摘要 弥散张量磁共振成像(DT-MRI)的脑白质纤维追踪成像利用脑白质水分子弥散构成的弥散张量信息追踪脑白质纤维束并无创重建其3维结构图像。针对现有追踪方法一般以局部体素的弥散张量为主要追踪依据,缺乏对纤维结构、弥散度等人体解剖结构和生理机能的综合考量的缺陷,该文基于贝叶斯理论框架综合分析追踪路径与各体素弥散张量方向和纤维束几何结构相关性,并使用弥散度和追踪纤维角度对两者进行约束,获得各步追踪方向的概率密度分布,通过Markov Chain Monte Carlo采样确定其追踪方向进行追踪成像,通过多次追踪获得具有统计意义的3维结果。最后利用文中方法在合成弥散张量数据上进行了成像仿真,在真实脑部DT-MRI数据上进行了成像实验。仿真和实验结果表明,该方法能实现预期的脑白质纤维追踪成像,比现有追踪成像方法结果更可靠,可重复性更强。 Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) can track the brain white matter fiber by tracing the local tensor orientation and reconstruct the three dimensional image noninvasively.The commonly used tracking method is usually based on the local diffusion information and insufficient to consider the geometrical structure and fractional anisotropy which is constrained by anatomical structure and physiological function of human been.Therefore,a novel method of fiber tracking based on Bayesian constrained stochastic framework is proposed.In this method,the correlation of tracking direction to both the diffusion directions of the current voxel and the structure information of the current fiber segment is considered synthetically.Meanwhile,the two components are constrained by the fractional anisotropy and angle of the fiber curve respectively.The probability distributions of the tracking directions of the next voxel is estimated under the Bayesian constrained stochastic framework.Then,according to the probability distributions,the fiber bundle is sampled with Markov Chain Monte Carlo method and the 3D image of its structure is reconstructed under multiply tracking.By the method,imaging simulations using a synthetic diffusion tensor dataset and imaging experiments using an in vivo brain DT-MRI dataset have been done.The results of the simulations and experiments demonstrate that using the method proposed,brain white matter fiber can be reconstructed properly as expected,more reliably and reproducibly compared with the common methods.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第8期1786-1791,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60971043) 四川省教育厅高等学校科技创新重大培育项目(09ZZ004)资助课题
关键词 弥散张量磁共振成像 脑白质纤维追踪成像 贝叶斯约束统计框架 Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) Brain white matter fiber tractography Bayesian constraint stochastic framework
  • 相关文献

参考文献12

  • 1Basser P, Mattiello J, and LeBihan D. MR diffusion tensor spectroscopy and imaging [J]. Biophysical Journal, 1994, 66(1): 259-267.
  • 2Susumu M and Zhang Jiang-yang. Principles of diffusion tensor primer imaging and its applications to basic neuroscience research [J]. Neuron, 2006, 51(5): 527-539.
  • 3Lenglet C, Campbell J S W, and Descoteaux M, et al.. Mathematical methods for diffusion MRI processing [J]. Neuroimage, 2009, 45(1): 111-122 .
  • 4白衡,高玉蕊,王世杰,罗立民.DTI扩散张量的一种稳健估计方法[J].计算机研究与发展,2008,45(7):1232-1238. 被引量:5
  • 5Basser P, Pajevic S, and Pierpaoli C, et al.. In vivo fiber tractography using DT-MRI data [J]. Magnetic Resonance in Medicine, 2000, 44(4): 625-632.
  • 6Behrens T E J,Woolrich M W, and Jenkinson M, et al.. Characterization and propagation of uncertainty in diffusion-weighted MR imaging [J]. Magnetic Resonance in Medicine. 2003.50(5): 1077-1088.
  • 7Behrens T E J, Berg H J, and Jbabdi S, et al.. Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? [J]. Neurolmage, 2007, 34(1): 144-155.
  • 8Fan Zhang, Hancock E R, and Goodlett C, et al.. Probabilistic white matter fiber tracking using particle filtering and yon Mises-Fisher sampling [J]. Medical Image Analysis, 2009, 13(1): 5-18.
  • 9Sherbondy A J, Dougherty R F, and Ben-Shachar M, et al.. ConTrack: Finding the most likely pathways between brain regions using diffusion tractography[J]. Journal of Vision, 2008, s(9): 1-16.
  • 10Duda R O and Hart P E. Pattern Classification and Scene Analysis[M]. New York: John Wiley and Sons, 1973: 32-37.

二级参考文献11

  • 1白衡,王世杰,罗立民,张宗军.基于双树复数小波降噪的扩散张量估计[J].信号处理,2007,23(3):330-335. 被引量:3
  • 2Basser P J, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging [J]. Biophysica, 1994, 66(1): 259 -267
  • 3Basser P J, Pajevic S, Pierpaoli C, et al. In vivo fiber tractography using DT MRI data[J]. Magnetic Resonance Medicine, 2000, 44(4): 625-632
  • 4Poupon C, Mangin J, Frouin V, et al. Regularization of MR diffusion tensor maps for tracking brain white matter bundles [G]//Proc of MICCAI, LNCS1496. Berlin: Springer, 1998: 489-498
  • 5Westin C, Maier S E, Khidhir B, etal. Image processing for diffusion tensor magnetic resonance imaging [G]//Proc of MICCAI, LNCS1679. Berlin: Springer, 1999:441-452
  • 6Weickert J, Brox T. Diffusion and regularization of vectorand matrix valued images, 58 [R]. Saarland; Department of Mathematics, Saarland University, 2002
  • 7Welk M, Feddern C, Burgeth B, et al. Median filtering of tensor-valued images [G]//Proc of German Conf on Pattern Recognition, LNCS2781. Berlin: Springer, 2003:17-24
  • 8Welk M, Weickert J, Becker F, et al. Median and related local filters for tensor-valued images, 135 [R]. Saarbrucken, Germany: Saarland University, 2005
  • 9Mangin J, Poupon C, Clark C, et al. Distortion correction and robust tensor estimation for MR diffusion imaging [J]. Medicine Image Analysis, 2002, 6(3): 191-198
  • 10Arslan O, Edlund O, Ekblom H. Algorithms to compute CM and S-estimates for regression [J]. Metrika, 2002, 55 (1): 37-51

共引文献4

同被引文献21

  • 1Tian G J,Xia Y,Zhang Y,et al.Hybrid genetic and variational expectation-maximization algorithm for Gaussian-mixture-model-based brain MR image segmentation.Information Technology in Biomedicine,IEEE Transactions on,2011; 15(3):373-380.
  • 2Zhang T,Xia Y,Feng DD.Clonal selection algorithm for gaussian mixture model based segmentation of 3d brain MR images.Intelligent Science and Intelligent Data Engineering.Springer Berlin Heidelberg,2012:295-302.
  • 3Xia Y,Eberl S,Wen L,et al.Dual-modality brain PET-CT image segmentation based on adaptive use of functional and anatomical information.Computerized Medical Imaging and Graphics,2012 ; 36 (1):47-53.
  • 4Descombes X.Markov models and MCMC algorithms in image processing.Academic Press Library in Signal Processing:Volume 4:Image,Video Processing and Analysis,Hardware,Audio,Acoustic and Speech Processing,2013 ; 30 (4):293-299.
  • 5Ulutas B H,Kulturel-Konak S.A review of clonal selection algorithm and its applications.Artificial Intelligence Review,2011 ; 36 (2):117-138.
  • 6Gong M,Jiao L,Zhang L.Baldwinian learning in clonal selection algorithm for optimization.Information Sciences,2010 ; 180 (8):1218-1236.
  • 7Oguro S,Tuncali K,Elhawary H,et al.Image registration of preprocedural MRI and intra-procedural CT images to aid CT-guided percutaneous cryoablation of renal tumors.International journal of computer assisted radiology and surgery,2011 ; 6(1):111-117.
  • 8Zhang T,Xia Y,Feng DD.An evolutionary hmff approach to brain mr image segmentation using clonal selection algorithm.Biological and Medical Systems,2012; 8(1):6-11.
  • 9Erdogan C,Paluri M,Dellaert F.Planar segmentation of RGBD images using fast linear fitting and markov chain monte carlo.Computer and Robot Vision (CRV),2012 Ninth Conference on,IEEE,2012:32-39.
  • 10高玉蕊,白衡,鲍旭东.基于向量选择的神经纤维跟踪改进算法[J].生物医学工程研究,2007,26(4):335-338. 被引量:4

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部