期刊文献+

一种纳米流体热导率通用模型 被引量:4

A GENERAL MODEL FOR PREDICTING THERMAL CONDUCTIVITY OF NANOFLUID
原文传递
导出
摘要 本文提出预测纳米流体热导率的通用模型,该模型可以预测含球形纳米颗粒的纳米流体或含纳米管的纳米流体的热导率。模型首先计算纳米粉体团聚体的热导率与团聚体在流体中的体积分数,进而计算得到纳米流体的热导率。将通用模型的预测结果、已有纳米流体热导率模型的预测结果与实验数据进行比较,结果表明97%的通用模型预测结果与实验数据的误差在10%以内,平均误差为2.8%。通用模型的精度超过已有的纳米流体热导率模型,且具有很好的通用性。 A general model for predicting the thermal conductivities of nanofluids containing nanoparticles or nanotubes is proposed.In the general model,the thermal conductivity of nano-scale powder clusters and the volume fraction of the clusters in nanofluids are calculated firstly,and then the thermal conductivity of nanofluids is calculated on the basis of the thermal conductivity of clusters and the volume fraction of clusters in nanofluids.The predictions of the general model and other existing models on nanofluid's thermal conductivity are compared with the experimental data.The results show that the general model agrees with 97%of the experimental data within the deviation of±10%,and the mean deviation is 2.8%.The general model is more accurate than the other existing models in predicting the thermal conductivity of nanofluid and has a good generalization capability for nanofluids containing either nanoparticles or nanotubes.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2010年第8期1281-1284,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.50976065) 上海市博士后科研资助计划(No.09R21413500)
关键词 纳米流体 纳米粉体 热导率 通用模型 nanofluid nano-powder thermal conductivity general model
  • 相关文献

参考文献12

  • 1Choi U S. Enhancing Thermal Conductivity of Fluids with Nanoparticles [J]. ASME FED, 1995, 231:99-105.
  • 2Choi U S, Zhang Z G, Yu W, et al. Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions [J].Applied Physics Letters, 2001, 79:2252-2254.
  • 3WANG B X, ZHOU L Z, PENG X F. A Prectal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles [J]. International Journal of Heat and Mass Transfer, 2003, 46:2665-2672.
  • 4Bi S S, Shi L, Zhang L L. Application of Nanoparticles in Domestic Refrigerators [J]. Applied Thermal Engineering, 2008, 28:1834-1843.
  • 5Prasher R, Bhattacharya R, Phelana P E. Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids) [J]. Physical Review Letters, 2005, 94:025901.1-025901.4.
  • 6XUAN Y M, LI Q, HU W F. Aggregation Structure and Thermal Conductivity of Nanofluids [J]. AIChE Journal, 2003, 49:1038-1043.
  • 7YU W, Choi U S. The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Hamilton-Crosser Model [J]. Journal of Nanoparticle Research, 2004, 6:355-361.
  • 8XUE Q Z. Model for the Effective Thermal Conductivity of Carbon Nanotube Composites [J]. Nanotechnology, 2006, 17:1655-1670.
  • 9JIANC W T, DINC C L, PENC H, et al. Experimental and Model Research on Nanorefrigerant ThermM Conduc- tivity [J]. HVAC&R Research, 2009, 15:651-669.
  • 10Jiang W T, Ding G L, Peng H, et al. Measurement and Model on Thermal Conductivities of Carbon Nan- otube Nanorefrigerants [J]. International Journal of Thermal Sciences, 2009, 48:1108-1115.

同被引文献37

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部