摘要
The surface structures ofwurtzite ZnO(0001) and(0001) surfaces are investigated by using a first-principles calculation of plane wave ultra-soft pseudo-potential technology based on density functional theory(DFT).The calculated results reveal that the surface energy of ZnO-Zn is bigger than that of ZnO-O,and the ZnO-Zn surface is more unstable and active.These two surfaces are apt to relax inward,but the contractions of the ZnO-Zn surface are smaller than the ZnO-O surface.Due to the dispersed Zn4s states and the states of stronger hybridization between the Zn and O atoms,the ZnO-Zn surface shows n-type conduction,while the O2p dangling-bond bands in the upper part of the valence cause the ZnO-O surface to have p-type conduction.The above results are broadly consistent with the experimental results.
The surface structures ofwurtzite ZnO(0001) and(0001) surfaces are investigated by using a first-principles calculation of plane wave ultra-soft pseudo-potential technology based on density functional theory(DFT).The calculated results reveal that the surface energy of ZnO-Zn is bigger than that of ZnO-O,and the ZnO-Zn surface is more unstable and active.These two surfaces are apt to relax inward,but the contractions of the ZnO-Zn surface are smaller than the ZnO-O surface.Due to the dispersed Zn4s states and the states of stronger hybridization between the Zn and O atoms,the ZnO-Zn surface shows n-type conduction,while the O2p dangling-bond bands in the upper part of the valence cause the ZnO-O surface to have p-type conduction.The above results are broadly consistent with the experimental results.
基金
Project supported by the National Natural Science Foundation of China(No.60877069)
the Research Project of Science and Technology of Guangzhou,Guangdong Province,China(Nos.2007A010500011,2008B010200041).