期刊文献+

Hersch-Pfluger偏差函数的Hlder平均不等式 被引量:2

A Hlder mean inequality for the Hersch-Pfluger distortion function
原文传递
导出
摘要 本文利用第一类和第二类完全椭圆积分的分析性质建立了Hersch-Pfluger偏差函数φK的Hlder平均不等式,推广了Anderson、Vamanamurthy和Vuorinen关于Hersch-Pfluger偏差函数φK的几何平均不等式. Using the analytic properties of the complete elliptic integrals of the first and the second kinds, we establish the Holder mean inequality for the Hersch-Pfluger distortion function φK, which extends the geometric mean inequality for the Hersch-Pfluger distortion function φK due to Anderson, Vamanamurthy and Vuorinen.
出处 《中国科学:数学》 CSCD 北大核心 2010年第8期783-786,共4页 Scientia Sinica:Mathematica
基金 浙江省自然科学基金(批准号:Y7080106) 浙江省教育厅复分析创新团队(批准号:T200924) 浙江省教育厅自然科学基金(批准号:Y200908671)资助项目
关键词 Hersch—Pfluger偏差函数 Holder平均 函数不等式 Hersch-Pfluger distortion function, Holder mean, functional inequality
  • 相关文献

参考文献17

  • 1Lehto O, Virtanen K I. Quasiconformal Mappings in the Plane. New York: Springer-Verlag, 1973.
  • 2Bowman F. Introduction to Elliptic Functions with Applications. New York: Dover, 1961.
  • 3Byrd P F, Friedman M D. Handbook of Elliptic Integrals for Engineers and Scientists. 2nd ed. Die Grundlehren Math Wiss 67. New York: Springer-Verlag, 1971.
  • 4Anderson G D, Vamanamurthy M K, Vuorinen M. Distortion functions for plane quasiconformal mappings. Israel J Math, 1988, 62:1-16.
  • 5Anderson G D, Vamanamurthy M K, Vuorinen M. Inequalities for plane quasiconformal mappings. Contemp Math, 1994, 169:1-27.
  • 6Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps. New York: John Wiley & Sons, 1997.
  • 7Hubner O. Remarks on a paper by Lawrynowicz on quasiconformal mappings. Bull Acad Polon Sci Ser Sci Math Astronom Phys, 1970, 18:183-186.
  • 8Kuhnau R. The conformal module of quadrilaterals and of rings. In: Handbook of Complex Analysis: Geometric Function Theory, vol. 2. Amsterdam: Elsevier, 2005, 99-129.
  • 9Partyka D, Sakan K. On an asymptotically sharp variant of Heinz's inequality. Ann Acad Sci Fenn Math, 2005, 30: 167-182.
  • 10Qiu S L, Vamanamurthy M K, Vuorinen M. Some inequalities for the Hersch-Pfluger distortion function. J Inequal Appl, 1999, 4:115-139.

同被引文献20

  • 1Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[M]. Washington: U.S. Government Printing Office, 1965.
  • 2Rainville E D. Special Functions[M]. New York: Macmillan, 1960.
  • 3Anderson G D, Qiu Songliang, Vamanamurthy M K, et al. Generalized elliptic integrals and modular equations[J]. Pacific J Math, 2000, 192: 1-37.
  • 4Qiu Songliang, Vuorinen M. Special functions in geometric function theory, In: Handbook of Complex Analysis: Geometric Function Theory, Vol. 2, 621-659[M]. Amsterdam: Elsevier Sci B V, 2005.
  • 5Alzer H, Qiu Songliang. Monotonicity theorems and inequalities for the complete elliptic integrals[J]. J Comput Appl Math, 2004, 172: 289-312.
  • 6Andras S, Baricz A. Bounds for complete elliptic integrals of the first kind[J]. Expo Math, 2010, 28: 357-364.
  • 7Guo Baini, Qi Feng. Some bounds for the complete elliptic integrals of the first and second kinds[J]. Math Inequal Appl, 2011, 14:323-334.
  • 8Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps[M]. New York: John Wiley &Sons, 1997.
  • 9Berndt B C, Bhargava S, Garvan F G. Ramanujan's theories of elliptic functions to alterna- tive bases[J]. Trans Amer Math Soc, 1995, 347: 4163-4244.
  • 10Lehto O, Virtanen K I. Quasiconformal Mappings in the Plane[M]. New York: Springer- Verlag, 1973.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部