期刊文献+

基于空间可信性聚类的图像分割算法 被引量:1

Image segmentation algorithm based on spatial credibilistic clustering
原文传递
导出
摘要 为解决噪声图像分割问题,提出了基于可信性测度并利用局部空间连续性的模糊聚类算法。采用可信性测度描述隶属度,去除了模糊c均值聚类中各像素对于所有类的隶属度之和为1的约束;并利用相异指标将局部空间信息引入聚类从而增强了抑制噪声的能力。隶属函数的参数可由数据集特点计算,削弱了参数选择的影响。提出预选准则以提高模糊聚类的稳定性。计算复杂度分析和实验验证了算法的可行性与实用性。结果表明:该算法在分割质量和效率等方面优于现有算法,适用于各种噪声图像的分割。 An algorithm based on a credibility measure and local spatial continuity was developed to improve noisy image segmentation. The constraint that memberships of a pixel across clusters must sum to 1 in fuzzy c-means is removed by use of the credibility measure. A dissimilarity index imposes the local spatial continuity to enhance the noise suppression. The membership function parameters can be computed based on the dataset characteristics so as to weaken the effect of the parameter selection. A pre-selection criterion is used to improve the stability of the fuzzy clustering. Analysis of computational complexity and numerical tests validate the feasibility and practicability. The results show that the algorithm has better quality and is more efficient than current algorithms for noisy image segmentation.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第8期1316-1320,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(70771058) 国家"八六三"高技术项目(2008AA04Z102) 清华大学基础研究基金资助项目(52202301)
关键词 图像识别 图像分割 模糊聚类 可信性聚类 空间连续性 image recognition image segmentation fuzzy clustering credibilistic clustering spatial continuity
  • 相关文献

参考文献16

  • 1Berget I, Mevik B H, Naes T. New modifications and applications of fuzzy c-means methodology [J].Computational Statistics & Data Analysis, 2008, 52(5): 2403 - 2418.
  • 2Li X, Lu X, Tian J, et al. Application of fuzzy c means clustering in data analysis of metabolomies [J]. Analytical Chemistry, 2009, 81(11) : 4468- 4475.
  • 3Chen W C, Wang M S. A fuzzy c-means clustering-based fragile watermarking scheme for image authentication [J]. Expert Systems with Applications, 2009, 36(2): 1300- 1307.
  • 4Zadeh L A. Fuzzy sets as a basis for a theory of possibility [J]. Fuzzy Sets and System, 1978.1(1): 3-28.
  • 5Krishnapuram R, Keller J M. A possibilistic approach to clustering [J]. IEEE Transactions on Fuzzy Systems, 1993, 1(2) : 98 - 110.
  • 6Tolias Y A, Panas S M. Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A : Systems and Humans, 1998, 28(3): 359-369.
  • 7Yang M S, Wu K L. Unsupervised possibilistic clustering [J]. Pattern Recognition, 2006, 39(1): 5 - 21.
  • 8Zhou J, Hung C, Wang X, et al. Fuzzy clustering analysis based on credibility measure [C]// 6th International Conference in Information and Management Sciences. Lhasa, China, 2007.
  • 9Ahmed M N, Yamany S M, Mohamed N, et al. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data [J]. IEEE Transactions on Medical Imaging, 2002, 21 (3) : 193 - 199.
  • 10Liew A W C, Yan H, Law N F. Image segmentation based adaptive cluster prototype estimation [J]. IEEE Transactions on Fuzzy Systems, 2005, 13(4) : 444 - 453.

同被引文献7

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部