期刊文献+

基于表面响应模型法的城市轨道交通用直线感应电机次级结构优化

Optimization of Secondary Structure of Linear Induction Motor in Urban Rail Transit Based on Response Surface Methodology
下载PDF
导出
摘要 建立了城市轨道交通用单边直线感应电机(SLIM)的3D有限元模型,通过次级结构参数化分析研究了次级结构参数对电机启动力特性的影响,找出了两个对启动力特性影响较大的参数,即次级铝板厚度与次级宽度。建立了仅需少量3D参数化有限元的分析结果,以及基于神经网络的SLIM启动力特性的表面响应模型。基于SLIM的表面响应模型,以次级铝板厚度与次级宽度为设计变量,以获得最大启动推力及最小法向力为优化目标,利用多目标遗传算法对SLIM次级结构参数进行了优化。提出了结合直线电机综合力性能指标进行最佳次级结构参数选择的方法。仿真与实验结果验证了电机表面响应模型以及优化方法的有效性。 A 3D finite element model (FEM) of SLIM in urban rail transit was built. The influence between the secondary structural parameters and starting force characteristics of SLIM was analyzed by parametric analysis of secondary structural parameters. Two parameters, secondary aluminum thickness and secondary width, were selected, which greatly influenced on the starting force characteristics of SLIM. The RSM of starting force characteristics was built based on NN, which only needed few parametric analysis of 3D FEM. Based on the RSM of SLIM, a multi-objective optimization of secondary structural parameters was carried out via multi-objective genetic algorithm (MOGA), which choosen secondary aluminum thickness and secondary width as design variables, and choosen maximum starting thrust force and minimum normal force as optimization goals. Then the selection method of the secondary structural parameters was proposed. The effectiveness of the method was verified by simulations and experiments.
机构地区 浙江大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2010年第15期1825-1830,共6页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50607016)
关键词 单边直线感应电机 多目标优化 表面响应模型 次级结构参数 神经网络 single-sided linear induction motor (SLIM) multi-objective optimization response surface model (RSM) secondary structural parameter neuron network (NN)
  • 相关文献

参考文献13

  • 1Nasar S A, Boldea I. Linear Motion Electric Machines [M]. New York: Wiley-Interscience, 1976.
  • 2Yamamura S. Theory of Linear Induction Motors[M]. 2nd ed. Tokyo: University of Tokyo Press,1978.
  • 3Yamaguchi T, Kawase Y, Yoshida M,et al. 3-D Finite Element Analysis of a Linear Induction Motor [J]. IEEE Transactions on Magnetics, 2001, 37 (5) : 3668-3671.
  • 4Hur J, Toliyat H A, Hong J P. Dynamics Analysis of Linear Induction Motors Using 3--D Equivalent Magnetic Circuit Network (EMCN) Method [J]. Electric Power Components and Systems, 2001, 29:531-541.
  • 5傅丰礼.异步电动机设计手册[M].2版.北京:机械工业出版社,2006.
  • 6Park J M, Kim S I, Hong J P, et al. Rotor Design on Torque Ripple Reduction for a Synchronous Reluctance Motor with Concentrated Winding Using Response Surface Methodology[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3479-3481.
  • 7Lee J Y, Chang J H, Kang D H,et al. Tooth Shape Optimization for Cogging Torque Reduction of Transverse Flux Rotary Motor Using Design of Experiment and Response Surface Methodology [J]. IEEE Transactions on Magnetics, 2007, 43 (4): 1817-1820.
  • 8Shin P S, Kim H D, Chung G B,et al. Shape Optimization of a Large-scale BLDC Motor Using an Adaptive RSM Utilizing Design Sensitivity Analysis[J]. IEEE Transactions on Magnetics, 2007,43 (4): 1653- 1656.
  • 9Hong D K, Woo B C, Koo D H,et al. Optimum Design of Transverse Flux Linear Motor for Weight Reduction and Improvement Thrust Force Using Response Surface Methodology[J]. IEEE Transactions on Magnetics, 2008, 44(11): 4317-4320.
  • 10Seo S, Kim N. Optimum Design of the Cored Linear Motor Using Experiment Design[J]. Journal of Mechanical Science and Technology, 2009, 23: 2215-2223.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部