期刊文献+

一个带白噪声的可变时滞Lotka-Volterra人口模型(英文) 被引量:1

A Variable Delay Lotka-Volterra Population Model with White Noise
原文传递
导出
摘要 因为人口模型经常遭遇环境噪音的影响,本文将如下Lotka-Volterra模型(t)=diag(x(t))[b+Ax(t)+Bx(t-δ(t))]随机扰动为It型随机微分方程dx(t)=diag(x(t))[(b+Ax(t)+Bx(t-δ(t)))dt+(Qx(t)+Rx(t-δ(t))dw(t)].在这个随机模型中对系数b,A,B不需任何限制,我们证明了环境噪音不仅会压制人口的爆炸还会使得方程的解随机一致有界. Since population models are often subject to environmental noise, in this paper we stochastically perturb the Lotka-Volterra model with variable delay x(t) = diag(x(t))[b + Ax(t) + Bx(t - δ(t))] into the It6 form dx(t) = diag(x(t))[(b + Ax(t) + Bx(t -δ(t)))dt + (Qx(t)+ Rx(t - δ(t))dw(t)]. We reveal that the environmental noise will not only suppress a potential population explosion in such model but will also make the solutions to be stochastically ultimately bounded without any additional condition on the coefficients b, A, B.
出处 《生物数学学报》 CSCD 北大核心 2010年第2期193-201,共9页 Journal of Biomathematics
基金 The Excellent Youth Foundation of Educational Committee of Hunan Provincial (08B005) the Hunan Postdoctoral Scientic Program(2009RS3020) the Scientic Research Funds of Hunan Provincial Education Department of China(09C059) the Scientic Research Funds of Hunan Provincial Science and Technology Department of China(2009FJ3103,2009ZK4021)
关键词 随机Loltka-Volterr模型 可变时滞 一致有界性 ITO公式 Stochastic Lotka-Volterra Model Variable Delay Ultimate Bounded-ness Ito's formula
  • 相关文献

参考文献17

  • 1Bahar A, Mao X. Stochastic delay Lotka-Volterra model[J]. J Math Anal Appl, 2004, 292:364-380.
  • 2Bahar A, Mao X. Stochastic delay population dynamics[J]. Int J Pure Appl Math, 2004 4:377-400.
  • 3Wu F, Hu S. Stochastic functional Kolmogorov-type population dynamics[J]. J Math Anal Appl, 2008, 347:534-549.
  • 4Gopalsamy K, He X. Oscillations and Convergence in an Almost Periodic Competition System[J]. Acta Appl Math, 1997, 46:247-266.
  • 5Huo H, Li W. Periodic solutions of a periodic Lotka-Volterra system with delays[J]. Appl Math Comput, 2004, 156:787-803.
  • 6Freedman H I, Wu J. Periodic solutions of single-species models with periodic delay[J]. SIAM J Math Anal, 1992, 23:689-701.
  • 7Rudnicki R. Long-time behaviour of a stochatic prey-predator model[J]. Stochastic Process Appl, 2003, 108:93-107.
  • 8Rudnicki R, Pichor K. Influence of stochastic perturbation on prey-predator systems[J]. Math Biosci, 2007, 206:108-119.
  • 9Liu S, Chen L. Profitless delays for extinction in nonautonoumous Lotka-Volterra system[J]. Commun Non- linear Sci Numer Simul, 2001, 4:210-216.
  • 10Mao X. Exponential Stability of Stochastic Differential Equations[M]. New York: Dekker, 1994.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部