期刊文献+

基于小波包变换的信号谱峰检测算法 被引量:1

Signal Peak Identification Using Wavelet Packet Transform
原文传递
导出
摘要 提出了一种新的基于小波包变换的信号谱峰检测算法,主要思想是利用小波包变换的特点,对信号功率谱进行平滑处理,突出谱峰的特征点(起点、顶点和终点),然后对其进行三层小波包变换,提取相应细节系数的特征点来估计谱峰的起点、顶点和终点,从而完成谱峰的检测。该方法的特点是无需信号的任何先验信息,是一种盲处理算法。仿真结果表明,信噪比不低于5dB的情况下,信号特征点检测的归一化均方误差(NMME)低于6‰,其性能比传统基于差分的方法有明显的优势。 This paper presents a novel method for peak identification of communication signal. Firstly, the spectrum should be smoothed to highlight the feature point (start point, top point and end point), then by using wavelet packet transform (WPT), the feature points of peak on frequency domain is detected efficiently. The advantage of this method is that the signal is processed without knowing any information in advance. The simulation results indicate that the normalized mean estimation error (NMME) of feature point position is less than 6‰ when signal-noise-ratio (SNR) is higher than 5 dB. Furthermore. The performance of this method is superior to that of conventional methods based on difference.
出处 《通信技术》 2010年第8期114-116,120,共4页 Communications Technology
关键词 谱峰检测 特征点检测 小波包变换 peak identification feature point detection wavelet packet transform
  • 相关文献

参考文献11

  • 1COIFINAN R, MEYER Y, QUAKER S, et al Compression with Wave Packets[J]. Signal Processing and In Proceedings of the Conference on Wavelets, 1989(03):246-247.
  • 2WICKERHAUSER M V. Acoustic Signal Compression with Waveletpackets[M].New York, USA:Academic, Press Professional, Inc.,1993,41(12):679-700.
  • 3WICKERHAUSER M V. Adapted Wavelet Analysis from Theory to Softwrzre[C]// Power Engineering Society Summer Mcetgn. NewYork, USA:IEEE Press, 1993:237-272;443-462.
  • 4HARNID E, KAWASAKI Z. Wavelet Packet Transform for Rms and Power Measurements[J]. Power Engineering Pericw of IEEE, 2001, 21 (02):1243-1245.
  • 5AGUIRRE G R, BOXALL S R, WEEKS A R. Identification of Algal Pigments Using High Order Derivatives[C]//International Geoscience and Remote Sensing Symposium. New York, USA:IEEE Press, 1995(03):2084-2086.
  • 6HERRINGTON D M, SIEBES M, WALFORD G D, et al. Derivative-based Edge Detection in Ouantitative Coronary Angiography is not Independent of Vessel Size[J].IEEE, 1988,8(04):351-354.
  • 7FERNANDO M, COORAY V. The Peak, Rise Time and the Half-width of Lighting Generated Electric Field Derivatives over Finitely Conducting Ground[C]//10th International Conf. on Electromagnetic Compatibility. New York, USA:IEE Press, 1997: 158-163.
  • 8KAY S M. Fundamentals of Statistical Signal Processing: Estimation Theory[M].USA: Prentice Hali, 1993:127-179.
  • 9WELCH P D. The Use of Fast Fourier Transform for the Estimation of Power Spectra: a Method Based on Time Averaging over Short Modified Periodograms[J].IEEE Trans. Audio Electroacoust, 1967,15(02):70-73.
  • 10刘伟,杜娟.基于循环谱理论的弱信号检测及特征参数估计[J].通信技术,2010,43(4):28-30. 被引量:17

二级参考文献11

  • 1徐自励,华伟,王一扬.多窗谱估计法估计相干函数的双端语音检测[J].通信技术,2007,40(5):1-3. 被引量:2
  • 2Satio N. Local Feature Extraction and its Applications using a Library of Bases[D]. Ph.D. Thesis, Dept. of Matbe-matics, Yale University, New Haven, CT USA, December, 1994.
  • 3Saito N, Coifman R. Local discriminant bases[C]// Laine A F, Unser M A. Mathematical Imaging: Wavelet Appli cations in Signal and Image Processing Ⅱ, Proc. SPIE, 1994,2303:2-14.
  • 4Basseviile M. Distance measures for signal processing and pattern recognition[J]. Signal Processing, 1989,8(4): 349-369.
  • 5Gardner W A.Exploitation of Spectral Redundancy in Cyclostationary Signals[J].IEEE SP Magazine,1991,8(02):14-36.
  • 6Proakis J P.数字通信[M].第4版.张力军,张宗橙,郑宝玉,译.北京:电子工业出版,2006.
  • 7Gardner W R.Measurement of Spectral Correlation[J].IEEE Trans.Acoust.,Speech,Signal Processing.1986,34(05):1111-1123.
  • 8Gardner W A,Brown W A,Chen C K.Spectral Correlation of modulated signals,Part Ⅱ-Digital modulation[J].IEEE Trans.Commun.1987,35(06):595-601.
  • 9Stephane Mallat著,杨力华,戴道清,黄文良译.信号处理的小波导引[M].北京:机械工业出版社,2002.
  • 10令瀚,李德生,叶中付.一种空间非均匀噪声环境下DOA估计的改进方法[J].通信技术,2008,41(9):196-198. 被引量:5

共引文献20

同被引文献12

  • 1Robert J M,Thomas F Q.Speech Analysis/Synthesis based on a Sinusoidal Representation[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1986,34(4):744-754.
  • 2Robert J M,Thomas F Q.Computationally Efficient Sine-Wave Synthesis and Its Application to Sinusoidal Transform Coding[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1988:370-373.
  • 3Kleijn W B,Paliwal K K.Speech Coding and Synthesis[M].Amsterdam:Elsevier,1995:121-173.
  • 4Yannis S,Laroche J,Moulines E.High-Quality Speech Modification based on a Harmonic+Noise Model[J].Eurospeech,1995.
  • 5Stylianou Y.Applying the Harmonic plus Noise Model in Concatenative Speech synthesis[J].IEEE Transactions on Speech and Audio Processing,2011,9:21-29.
  • 6Pantazis Y,Stylianou Y.Improving the Modeling of the Noise Part in the Harmonic plus Noise Model of Speech[J].ICASSP,2008:125-131.
  • 7Yannis P,Georgious T,Olivierr,et al.Analysis/Synthesis of Speech based on an Adaptive Quasi-Harmonic plus Noise Model[J].ICASSP,2010:4246-4249.
  • 8Griffin D,Lim J.Multiband-Excitation Vocoder[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1998(36):236-243.
  • 9Toru T,Mikio T,Katsuhiko S.Detection of Speech and Music based on Spectral Tracking[J].Speech Communication,2008(50):547-563.
  • 10Jalil S,Shahrokh G.Improvement to Speech-Music Discrimination Using Sinusoidal Modal based Features[J].Multimedia Tools,2010(50):415-435.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部