期刊文献+

链路感知的传感器网络空间范围查询处理算法

Link Aware Spatial Window Query Processing Algorithm in Wireless Sensor Networks
下载PDF
导出
摘要 在无线传感器网络环境中,用户经常提交空间范围查询以获取网络某局部区域的统计信息,如最大温度、平均湿度等。现有的基于路线的空间范围查询处理算法假设节点通信模型为理想的圆盘模型,而实际的网络并不满足该假设,导致其能量消耗大且查询结果质量差。提出了一种链路感知的空间范围查询处理算法LSA,它根据网络拓扑和链路质量动态地将查询区域划分为若干个网格,依次收集各网格中节点的感知数据,以生成最终的查询结果。LSA算法通过遍历查询区域内的所有网格,保证了算法查询结果的质量。提出了启发式的网格划分方法以降低节点间数据通信的丢包率,给出链路感知的数据收集算法,以减少算法的能量消耗,提高查询结果的质量。通过仿真实验系统地分析和比较了LSA算法和现有的IWQE算法的能量消耗及查询结果质量,结果表明,在绝大多数情况下,LSA算法优于IWQE算法。 In wireless sensor networks, the users often submit spatial window queries to obtain the summary information of a local area in the network such as maximum temperature, average humidity, et al. The current state-of-the-art itinerary-based spatial query processing algorithms make the assumption of the link model pertaining to the ideal disk model. However, it's not valid in realistic networks, which leads to large energy consumption and poor quality query result. This paper proposes a link quality aware spatial window query processing algorithm called LSA(link aware spatial window query processing algorithm). It divides the query region into several grids according to the topology and link of the network, and collects data from the sensor nodes in each grid to derive the final query result. LSA traverses all the grids within the query region which ensures the query result quality of the algorithm. In order to reduce the packet loss rate of communications between nodes, a heuristic method is given which divides the query region into grids. Then, a link aware data collection algorithm is proposed to reduce energy consumption and improve the query result quality of the algorithm. Finally, this paper systematically analyzes and compares the energy consumption and the query result quality of the LSA and the existing IWQE(itinerary-based window query execution) algorithm through simulation experiments. Experimental results show that LSA algorithm outperforms - v IWQE in most cases.
出处 《计算机科学与探索》 CSCD 2010年第8期749-760,共12页 Journal of Frontiers of Computer Science and Technology
基金 国家高技术研究发展计划(863)No.2007AA01Z404 江苏省支撑计划项目No.BE2008135 工信部电子信息产业发展基金 南京航空航天大学基本科研业务费专项科研项目No.NS2010101 国家电网公司科技项目No.SGKJ0884~~
关键词 无线传感器网络 查询处理 空间范围查询 链路质量 wireless sensor network query processing spatial window query link quality
  • 相关文献

参考文献26

  • 1Madden S,Franklin M J,Hellerstein J M,et al.The design of an acquisitional query processor for sensor networks[C] //Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data.New Ybrk:ACM Press,2003:491-502.
  • 2Goldin D,Song M,Kutlu A,et al.Georouting and deltagathering:Efficient data propagation techniques for GeoSensor networks[C] //Proceedings of 1 st GeoSensor Networks Workshop,Portland,Maine,2003.
  • 3Guttman A.R-trees:A dynamic index structure for spatial searching[C] //Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data.New York:ACM Press,1984:47-57.
  • 4Coman A,Nascimento M A,Sander J.A framework for spatio-temporal query processing over wireless sensor networks[C] //Proceedings of the 1st International Workshop on Data Management for Sensor Networks in Conjunction with very Large Data Bases.New York:ACM Press,2004:104-110.
  • 5Coman A,Nascimento M A,Sander J.Exploiting redundancy in sensor networks for energy efficient processing of spatiotemporal region queries[C] //Proceedings of the 14th ACM Conference on Information and Knowledge Management.New York:ACM Press,2005:187-194.
  • 6刘亮,秦小麟,戴华,严伟中,潘锦基.能量高效的无线传感器网络时空查询处理算法[J].电子学报,2010,38(1):54-59. 被引量:11
  • 7Jain N,Yalagandula P,Dahlin M,et al.Self-tuning,bandwidth-aware monitoring for dynamic data streams[C] //Proceedings of the 22nd International Conference on Data Engineering.Washington DC:IEEE Computer Society,2009.
  • 8Jain N,Yalagandula N,Dahlin M,et al.STAR:Self-tuning aggregation for scalable monitoring[C] //Proceedings of the 33rd International Conference on Very Large Data Bases.Washington DC:IEEE Computer Society,2007:962-973.
  • 9Wu Minji,Xu Jianliang,Tang Xueyan,et al.Top-k monitoting in wireless sensor networks[J].IEEE Transactions on Knowledge Data Engineering,2007,19(7):962-976.
  • 10Xu Yingqi,Lee Wangchien,Xu Jianliang,et al.processing window queries in wireless sensor networks[C] //Proceedings of the 22nd International Conference on Data Engineering.Washington DC:IEEE Computer Society,2006:70-80.

二级参考文献16

  • 1郭龙江,李建中,李贵林.无线传感器网络环境下时-空查询处理方法[J].软件学报,2006,17(4):794-805. 被引量:29
  • 2Y Yao, J Gehrke. Query processing in sensor networks. Proceedings of the 2003 CIDR Conference[OL]. http://www-db. cs. wise. edu/cidr/2003Proceedings. zip.
  • 3S Madden,M J Franklin, J M Hellerstein, et al. The deign of an acquisitional query processor for sensor networks[ A]. Proc of the 2003 ACM SIGMOD International Conference on Management of Data [C]. New York: ACM Press, 2003.491 - 502.
  • 4A Coman,M A Nascimento,J Sander.A framework for spatiotemporal query processing over wireless sensor networks [ A]. Proc of the 1st Int'l Workshop on Data Management for Sensor Networks in Conjunction with VLDB 2004[ C]. Washington: IEEE Computer Society,2004.104- 110.
  • 5A Coman, M A Nascimento. An analysis of spatio-temporal query processing in sensor networks[ A] .Proc of the 1st IEEE Int'l Workshop on Networking Meets Databases in Conjunction with 21st IEEE Conf. on Data Engineering[C]. Washington: IEEE Computer Society,2005.120- 125.
  • 6A Coman, M A Nascimento, J. Sander. Exploiting redundancy in sensor networks for energy efficient processing of spatioternporal region queries[A] .Proc of the 14th ACM Conf. Information and Knowledge Management[ C] .New York:ACM Press, 2005.187 - 194.
  • 7Yingqi Xu, Wang-Chien Lee, Jianliang Xu, Gail Mitchell. Processing window queries in wireless sensor networks[A]. Proc of the 22nd International Conference on Data Engineering [C]. Washington: IEEE Computer Society, 2006.70 - 80.
  • 8N Jain, P Yalagandula, Michael Dahlin, et al. Serf-tuning, bandwidth-aware monitoring for dynamic data streams [A]. Proc of the 22nd International Conference on Data Engineering[C]. Washington: IEEE Computer Society, 2009. 114 - 125.
  • 9N Jain,M Dahlin,Y Zhang,et al. STAR: self-tuning aggregation for scalable monitoring[ A] .Proc of the 33rd International Conference on Very Large Data Bases[C]. Washington: IEEE Computer Society, 21307.962 - 973.
  • 10B Karp, H T Kung. GPSR: greedy perimeter stateless routing for wireless networks[A]. Proc of the 6th Annual International Conference on Mobile Computing and Networking[C]. New York: ACM Press, 2000.243 - 254.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部