1HARVEY J F. Theory and design of pressure vessels[M]. New York: Van Nostrand Reinhold Company Ltd., 1991.
2MAAN H J, JAMES R F. Structural analysis and design of process equipment[M]. New York: John Wiley & Sons, 1984.
3BROWNELL L E, YOUNG E H. Process equipment design[M]. New York: John Wiley & Sons, 1959.
4YU G. Chemical pressure vessel and equipment [M]. Beijing: Chemical Industrial Press, 1990.
5KONG F. Determine the optimum radius of the elastic-plastic Juncture, Re, for thick-wall autofrettaged cylinder by graphic method[J]. Petrochemical Equipment, 1986, 15(11): 42-45.
6ZHU Ruilin, YANG Jinlai. Autofrettage of thick cylinders[J]. Int. J. Pres. Ves. & Piping, 1998, 75(6): 443-446.
7HAMEED A, BROWN R D, HETHERINGTON J. A study of the residual stress distribution in an autofrettaged, thick-walled cylinder with cross-bore[J]. Journal of Pressure Vessel Technology, 2004, 126(4): 497-503.
8LEVY C, PERL M, MA Q. The influence of finite three-dimensional multiple axial erosions on the fatigue life of partially autofrettaged pressurized cylinders[J]. Journal of Pressure Vessel Technology, 2003, 125(4): 379-384.
9SWARDT R R de. Finite element simulation of crack compliance experiments to measure residual stresses in thick-walled cylinders[J]. Journal of Pressure Vessel Technology, 2003, 125(3): 305-308.
10PARKER A P, O'HARA G P, UNDERWOOD J H. Hydraulic versus swage autofrettage and implications of the bauschinger effect[J]. Journal of Pressure Vessel Technology, 2003, 125(3): 309-314.