期刊文献+

基于均值距离的图像分割方法 被引量:1

An image segmentation method based on mean divergence
原文传递
导出
摘要 针对医学图像分割中存在的分割类数不易确定的问题,利用常用均值间的不等式关系构造出了一种新的分割类数判据——均值距离函数,并将均值距离函数与模拟退火算法相结合,提出了一种基于均值距离的分割算法。该算法以均值距离函数作为目标函数,采用模拟退火算法进行优化,在整个搜索空间中寻找最优分割阈值,弥补了模糊C均值算法(fuzzy C-means,FCM)分类类数难以确定、搜索过程容易陷入局部极值的缺陷。实验结果表明,算法对含有病灶的医学图像能够进行自动分割,并且分割速度明显高于基于互信息的分割方法。 In the research of medical image segmentation,it is difficult to determine the number of segmentation classes.To solve the problem,a novel measurement for determining the number of classes named mean divergence function was formed according to the relation among three common means.And then an image segmentation method based on mean divergence and simulated annealing was proposed.In this method,the mean divergence function is used as an optimization object and simulated annealing is used as an optimization method to find the optimal segmentation threshold in overall search space.This overcomes the shortcomings of fuzzy C-means(FCM) clustering algorithm,such as it is hard to determine the number of classes and easy to get into a local extremum.Experimental results show that this method could automatically segment the medical image with focus,and the speed had significant improvement compared with the method based on mutual information.
出处 《山东大学学报(工学版)》 CAS 北大核心 2010年第4期36-41,共6页 Journal of Shandong University(Engineering Science)
基金 国家高技术研究发展计划(863计划)资助项目(2006AA02Z4D9)
关键词 图像分割 医学图像 均值距离 模拟退火 相似性 image segmentation medical image mean divergence simulated annealing similarity
  • 相关文献

参考文献11

二级参考文献95

共引文献78

同被引文献24

  • 1高丽,杨树元,李海强.一种基于标记的分水岭图像分割新算法[J].中国图象图形学报,2007,12(6):1025-1032. 被引量:110
  • 2WANG Z,XIAO N.Using MD-adaboost to enhance classifier of facial expression recognition[J].Journal of Computational Information Systems,2013,9(3):923-932.
  • 3MAKOTO M,YONEYAMA M,SHIRAI K.Extraction of human face and transformable region by facial expression based on extended labeled graph matching[J].Electronics and Communications in Japan,2012,87(10):35-43.
  • 4WANG L,HE L,MISHRA A,et al.Active contours driven by local Gaussian distribution fitting energy[J].Signal Processing,2009,89(12):2435-2447.
  • 5MATTHEW B.Modeling regional dynamics of human-rangifer systems: a framework for comparative analysis[J].Ecology and Society,2013,18(4):43.
  • 6WU Y,YU T.A field model for human detection and tracking[J].IEEE Trans PAMI,2006,28(5):753-765.
  • 7GORELICK L,BLANK M,SHECHTMAN E,et al.Actions as space-time shapes[J].IEEE Trans PAMI,2007,29(12):2247-2253.
  • 8XING J,AI H,LAO S.Multiple human tracking based on multi-view upper-body detection and discriminative learning[C]//Proceedings of 20th International conference on Pattern Recognition.Istanbul,Turkey:IEEECS Press,2010:1698-1701.
  • 9WEI H,LANG B,ZUO Q.Contour detection model with multi-scale integration based on non-classical receptive field[J].Neurocomputing,2013,103:247-262.
  • 10XIE X,MIRMEHDI M.RAGS: region-aided geometric snake[J].IEEE Transactions on Image Processing,2004,13(5):640-652.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部