期刊文献+

人工神经网络自校正PID在变风量空调中的应用 被引量:1

Application of Artificial Neural Network Self-tuning PID in VAV
下载PDF
导出
摘要 根据变风量空调的特点,建立特定的物理模型,提出了BP神经网络自校正PID的控制策略,建立了仿真模型并进行仿真研究。仿真结果表明,该控制方式对于复杂的空调控制系统具有更好的控制效果。 According to the characteristics of the VAV,the specific physical model can be set up.This article raises control strategy of the BP neural network self-tuning PID,and sets up a simulation model and carries out a simulation study.The results show that the control strategy of complex air-conditioning control system is better than others.
出处 《机械制造与自动化》 2010年第4期123-125,共3页 Machine Building & Automation
关键词 变风量空调 控制 BP神经网络 自校正PID VAV control BP neural network self-tuning PID
  • 相关文献

参考文献8

  • 1Simon Haykin.Neural networks a comprehensive foundation[M].Pearson Education,2004.
  • 2MartinTHagan 戴葵译.Neural Network Design[M].北京:机械工业出版社,2002.227.
  • 3中国有色金属总公司.GBJ1987采暖通风与空气调节设计规范[S],北京:中国计划出版社,1989.
  • 4Horton W T,Groll.Effects of formation on the external heat transfer coefficient of a counter cross flow display case air coil[C].Proceedings of 1998 International Refrigeration Conference at Purdue,1998.
  • 5Ramin Faramarzi.Efficient display case refrigeration[J].ASHRAE Journal,1998,(11):46-54.
  • 6姜雪辉,余波,张春辉,雷恒,马廷卫.基于Matlab的变风量空调系统的仿真[J].机械工程与自动化,2006(1):80-82. 被引量:5
  • 7江大勇,黄道.人工神经元网络在暖通空调系统中的应用[J].暖通空调,2000,30(6):39-41. 被引量:13
  • 8Boiarski M,Podchernyaev O,et al.Enhancement of supermarket freezers to reduce energy consumption and increase refrigeration capacity[C].Proceedings of 1996 International Refrigeration Conference at Purdue.1996,(27):22-76.

二级参考文献16

  • 1高甫生,赵建成,高鹏.大中型商场空调冷负荷问题[J].暖通空调,1995,25(4):46-50. 被引量:18
  • 2武建勋.空调建筑统计能耗模型探讨[J].暖通空调,1996,26(6):13-16. 被引量:7
  • 3中国有色金属总公司.GBJ1987采暖通风与空气调节设计规范[S],北京:中国计划出版社,1989.
  • 4杨白厚.自动控制原理[M].北京:冶金工业出版社,1994.
  • 5张志涌.精通MATLAB 6.5版[M].北京:北京航天航空大学出版社,2004..
  • 6陆亚俊 马最良 邹平华.暖通空调[M].北京:中国建筑工业出版社,2003.211-230.
  • 76,Curtiss P S,J F Kreider,M J Brandemuehl.Adaptive control of HVAC processes usingpredictive neural networks.ASHRAE Trans,1993,99(Part I):496-504.
  • 87,Curtiss P S.Experimental results from a network-assisted PID controller.ASHRAETrans,1996,102(Part I):1157-1168.
  • 98,M Anstett,J F Kreider.Application of neural networking models to predict energyuse.ASHRAE Trans,1993,99(Part I):505-517.
  • 109,R C Miller.Comparison of artificial neural networks with traditional methods ofpredicting return time from night or weekend setback.ASHRAE Trans,1991,97(Part I):500-508.

共引文献30

同被引文献8

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部