期刊文献+

基于主元分析法的浅地层小目标探测算法 被引量:1

AN ALGORITHM FOR DETECTION OF SHALLOWLY BURIED SMALL OBJECTS BASED ON PRINCIPAL COMPONENT ANALYSIS
下载PDF
导出
摘要 在应用便携式探地雷达(GPR)进行浅地层中的小目标探测时,由于目标回波能量小,目标回波与直达波叠加,加上地表杂波及探测产生的杂波,大大降低了目标回波的信噪比,使在复杂的浅地层介质之中,难以对小目标进行准确探测。因此提出了基于主元分析(PCA)法的浅地层小目标探测算法,通过PCA分解,将当前雷达扫描数据映射到背景所在的投影方向上,建立检验函数并和自适应阈值比较,判断是否含有目标回波信息,结合动态背景更新即可实现浅地层中小目标的探测。用PCA法对在沙土、红土、黏土、草地试验的数据进行处理,结果表明PCA法能够探测出浅地层中的小目标。 It is difficult to exactly detect small objects in complex shallow subsurface.As the energy of backscattered signal from the target is low,backscattered signals from target and ground surface are overlapped.In addition,clutters created by ground surface and movement strongly depress the signal-to-clutter ratio when shallowly buried small objects are detected by portable ground penetrating radar(GPR).An algorithm for detection of shallowly buried objects based on principal component analysis(PCA) is thus proposed in this paper.Via PCA decomposition,current A-scan data are projected onto the projecting direction of background data.A set test function is compared with adaptive threshold to decide if current A-scan data are from an object.Detection of shallowly buried small objects can be achieved in combination with background data dynamic updating.The data tested in sand,laterite,clay and lawn were processed,and the results show that shallowly buried objects can be detected using algorithm based on PCA.
出处 《物探与化探》 CAS CSCD 北大核心 2010年第4期493-496,共4页 Geophysical and Geochemical Exploration
关键词 探地雷达 目标检测 主元分析 自适应阈值 ground penetrating radar object detection principal components analysis adaptive threshold
  • 相关文献

参考文献7

二级参考文献19

  • 1Olve.,AD,孙明甫.探测埋藏目标的FMCW雷达[J].电光系统,1989(2):41-52. 被引量:1
  • 2[1]G Olhoef.Applications of ground penetrating radar[A].Proc 6th Int Conf Ground Penetrating Radar (GPR'96)[C].Japan:SPIE,1996.18-23.
  • 3[2]Xiaoyin Xu,Eric L Miller.Statistical method to detect subsurface objects using array ground-penetrating radar data[J].IEEE Trans on Geoscience and Remote Sensing,2002,40(4):963-975.
  • 4[3]P Gamba,S Lossani.Neural detection of pipe signatures in ground penetrating radar data[J].IEEE Trans on Geoscience and Remote Sensing,2000,38(2):790-797.
  • 5[4]L van Kempen,H Sahli,J Brooks,J Cornelis.New results on clutter reduction and parameter estimation for landmine detection using GPR[A].SPIE Proc 8th Int Conf Ground Penetrating Radar (GPR'2000)[C].Australia:SPIE,2000.872-879.
  • 6[5]Toru Kaneko.Radar image processing for locating underground linear objects [J].IEICE Trans,1991,E74(10):3451-3458.
  • 7[6]Timothy Miller,Lee Potter.RFI suppression for ultra wideband radar[J].IEEE Trans on Aerospace Electronic Systems,1997,33(4):982-994.
  • 8[7]Hough P V C.A method and means for recognizing complex patterns[P].US Patent:3,069,654,1962.
  • 9Learned Rachel E,Willsky Alan S.A Wavelet Packet Approach to Transient Signal Classification[J].Applied and Computational Harmonic Analysis,1995,(2):265-278.
  • 10Won G K M,Wu J,Davidson N N,et al.Wavelet packet division multiplexing and wavelet packet design under timing error effects[J].IEEE Trans Signal Processing,1997,45(12) :2877- 2890.

共引文献23

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部