期刊文献+

3D散乱数据点分段二次逼近的曲面拟合

Fitting surface to 3D scattered point set based on piecewise quadratic approximation
下载PDF
导出
摘要 为进一步提高曲面重构的保形性及高效性,提出了一种自动构建光顺三角曲面的方法.该法首先通过构建三角形元覆盖边界域来构建一张曲面近似粗网,然后从点集中不断添加新点直至达到指定的容差,在每个插入数据点处构造C1连续的分片二次逼近面片,最终整体的C1曲面由各三角形上的曲面片拼合而成.最后给出了该方法在真实点集上的运用结果并与其他方法所构造的逼近曲面形状进行了比较,结果表明,该方法对密集3D散乱数据点建模有效,生成的曲面质量高,误差小.该方法也适用于数据精简. In order to improve the shape-preserving and efficiency of surface reconstruction, an automatic method for constructing smooth surfaces defined as curved triangular patches is proposed. The method started with a coarse mesh approximating the surface through triangular elements covering the boundary of the domain, then, iteratively added new points from the data set until a specified error tolerance attained, and at the adjacent region of each point a C1 piecewise quadratic approximation patch was constructed, all the triangle patches were combined together to form the whole surface with C1 continuities. Finally, the method has been implemented on real data set and compared with other methods. The results show that the method is effective for 3D scattered data points with high surface quality and low error. The method is also suitable for data reduction.
出处 《工程设计学报》 CSCD 北大核心 2010年第4期293-296,共4页 Chinese Journal of Engineering Design
基金 深圳信息职业技术学院青年自然科学基金资助项目(QN-08013)
关键词 分段二次逼近 散乱点集 曲面拟合 三角面片 piecewise quadratic approximation scattered point set surface fitting triangular patch
  • 相关文献

参考文献7

  • 1武剑洁,王启付,黄运保,周济.逆向工程中曲面重建的研究进展[J].工程图学学报,2004,25(2):133-142. 被引量:27
  • 2PAN X F,ZHANG X,LU M W.Meshless galerkin least-squares method[J].Computational Mechanics,2005,35(3):182-189.
  • 3JOSHI P,SEQUIN C.Energy minimizers for curvature-based surface functionals[J].Proceedings of Computer Aided Design and Applications,2007,14(5):607-617.
  • 4GalicI,WEICKERT J,WELK M.Towards PDE-based image compression[J].Lecture Notes in Computer Science,2005,37(5):37-48.
  • 5TNBOL J.Surface characterization using wavelet theory and confocal laser scanning microscopy[J].Journal of Tribology,2005,127(2):394-405.
  • 6PEDRINI Helio.An improved refinement and decimation method for adaptive terrain surface approximation[C]//Proceedings of the 9th International Conference in Central Europe on Computer Graphics Visualization and Computer Vision.Plzen,Czech Republic,2001:103-109.
  • 7MILROY M,BRADLEY C,VICKERS G.G1 continuity of B-spline surface patches in reverse engineering[J].Computer Aided Design,1995,27(6):471-478.

二级参考文献54

  • 1[1]Varady T, Martin R R, Cox J. Reverse engineering of geometric models--an introduction [J].Computer Aided Design, 1997, 29(4): 255~268.
  • 2[2]Soderkvist I. Introductory overview of surface reconstruction methods [R]. Department of Mathematics, Lulea University, Sweden, 1999.
  • 3[3]Pratt V. Direct least-squares fitting of algebraic surface [J]. Computer Graphics, 1987, 21(4): 145~152.
  • 4[4]Sclaroff S, Pentland A. Generalized implicit functions for computer graphics [J]. Computer Graphics, 1991,25(4): 247~250.
  • 5[5]Zhou, Kambhamettu C. Extending superquadrics with exponent functions: modeling and reconstruction [J].Graphical Models, 2001, 63: 1~20.
  • 6[6]Sarkar B, Menq C H. Smooth surface approximation and reverse engineering [J]. Computer Aided Design,1991, 23 (9): 623~628.
  • 7[7]Krishnamurhy V, Levoy M. Fitting smooth surfaces to dense polygon meshes [J]. Computer Graphics, 1996,30(4): 313~324.
  • 8[8]Milroy M, Bradley C, Vickers G, et al. G1 continuity of B-spline surface patches in reverse engineering [J].Computer Aided Design, 1995, 27: 471~478.
  • 9[9]Eck M, Hoppe H. Automatic reconstruction of B-spline surfaces of arbitrary topological type [J].Computer Graphics, 1996, 30(4): 325~334.
  • 10[10]Forsey D R, Bartels R H. Surface fitting with hierarchical splines [J]. ACM Trans on Graphics,1995, 14(2): 134~161.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部