期刊文献+

米非司酮对胰岛素抵抗大鼠心肌损伤的保护作用及其机制 被引量:1

Effect and Mechanism of Mifepristone on Myocardial Injuries of Insulin-resistant Rats
下载PDF
导出
摘要 目的:考察米非司酮对高脂饮食所致胰岛素抵抗大鼠心肌功能和结构变化的影响,并从细胞水平研究其作用机制。方法:1)将40只SD大鼠随机分为正常对照组、模型组、吡格列酮组及米非司酮高、低剂量组,每组8只。除正常对照组给予普通饲料外,其余各组均给予高脂饲料。正常对照组和模型组每日灌胃给予0.5%CMC-Na溶液(0.1mL.kg-1),给药组分别给予吡格列酮(3mg.kg-1.d-1)及米非司酮(40,20mg.kg-1.d-1)。8周后,测定各组大鼠空腹血糖、空腹胰岛素水平,计算HOMA-胰岛素抵抗指数,模型组该指数显著高于正常对照组时,视为造模成功;采用套尾法测定各组大鼠血压,并做心脏病理切片观察心肌功能和结构的变化。2)将原代培养2~3天的心肌细胞随机分为正常对照组、地塞米松(6×10-6mol.L-1)组、地塞米松(6×10-6mol.L-1)+吡格列酮(2×10-4mol.L-1)/米非司酮(高、中、低剂量)(2×10-4,2×10-5,2×10-6mol.L-1)组、胰岛素(5×10-6mol.L-1)组、胰岛素(5×10-4mol.L-1)+吡格列酮(2×10-4mol.L-1)/米非司酮(高、中、低剂量)(2×10-4,2×10-5,2×10-6mo.lL-1)组。分组给药、连续培养48小时后,测定各组原代心肌细胞葡萄糖消耗量、细胞活力及游离脂肪酸和乳酸脱氢酶的含量,考察心肌细胞功能状态变化。结果:1)高脂饮食饲养8周后,大鼠出现胰岛素抵抗并伴有脂质代谢紊乱,血清皮质酮含量升高,病理切片结果显示模型组大鼠心肌受损,米非司酮组上述状况明显改善(P<0.01)。2)胰岛素和地塞米松均能造成原代心肌细胞胰岛素抵抗模型,并造成细胞代谢紊乱,而米非司酮可改善地塞米松造成的心肌功能状态异常(P<0.05,P<0.01),但对胰岛素诱导的异常无效(P>0.05)。结论:米非司酮可降低高脂饮食所致的胰岛素抵抗大鼠心肌受损程度,推测其通过拮抗糖皮质激素而发挥作用。 Objective: To observe the effect of mifepristone on the changes of myocardial functions and structures of insulin-resistant (IR) rats induced by high-fat diet, and to investigate the mechanism at the cell level. Methods: 1) Forty SD rats were randomly divided into five groups: including normal group, model group, pioglitazone group and two mifepristone groups in high and low dosage. The rats in normal group were given normal feed and the rats in other groups were given high fat feed. Meanwhile, 0.5% CMC-Na (0. 1 mL.kg^-1) were administered once daily by gavage in normal and model groups. Pioglitazone (3 mg.kg^-1.d-1) or mifepristone (40, 20 mg.kg-1 .d^-1) was administered by gavage in pioglitazone group and mifepristone groups, respectively. Eight weeks later, fasting blood glucose and insulin were assayed to calculate HOMA-IR index. The IR model was considered successful when HOMA-IR index in model group increased significantly compared with normal group. Blood pressure was measured by tail-cuff method and pathological changes of myocardium were observed to evaluate the function and structure of the heart. 2) The myocardial cells were primarily cultured for 2-3 days and randomly divided into normal group, dexamethasone ( 6 × 10 ^-6 mol- L^-1) group, dexamethasone ( 6 × 10^ -6 mol. L^-1 ) + pioglitazone (2 × 10^-4 mol · L^-1 )/ mifepristone (2 × 10^-4, 2 × 10^-5, 2 × 10^-6 mol ·L^-1) groups, insulin (5 × 10^-6mol-L^-1) group, insulin (5 ×10^-6 mol.L^-1) + pioglitazone (2 × 10^-4 mol.L^-1)/mifepristone (2 × 10^-4, 2 × 10^-5, 2 ×10^-6 mol. L^-1) groups. After these drugs were administered respectively, the cardiomycytes were cultured again for 48 hours, and the glucose consumption, viability, FFA and LDH levels of primary myocardial cells were assayed to investigate the changes of the cells. Results: 1) Administration of high-fat diet for eight weeks resulted in IR, accompanied with lipid metabolism disorder, corticosteron increasing and myocardial injury, while mifepristone could attenuate these changes (P 〈0. 01). 2) IR of cell model can be established and metabolism disorder of the cells can be caused by using dexa- methasone and insulin. Mifepristone can improve the dysfunction of the cells induced by dexamethasone (P 〈0.05, P 〈0. 01) , but it has no effect on that induced by insulin (P 〉0. 05). Conclusion: Myocardial injuries in IR rats induced by high-fat diet may be attenuated by mifepristone. It might be related to the biological effect of antagonism of mifepristone on glucocorticoid
出处 《药学进展》 CAS 2010年第8期365-371,共7页 Progress in Pharmaceutical Sciences
关键词 胰岛素抵抗 心肌损伤 糖皮质激素 脂质代谢紊乱 米非司酮 insulin resistance myocardial injury glucocorticoid lipid metabolism disorder mifepristone
  • 相关文献

参考文献15

  • 1Grundy S M,Brewer H B,Cleeman J I,et al.Definition of metabolioc syndrome:report of the National Heart,Lung,and Blood Institute /American Heart Association confe-rence on scientific issues related to definition[J].Circulation,2004,109(3):433-438.
  • 2Mlinar B,Marc J,Jane A,et al.Molecular mechanisms of insulin resistance and associated diseases[J].Clin Chim Acta,2007,375(1/2):20-35.
  • 3Vaughan T B,Bell D S.Diabetic cardiomyopathy[J].Heart Fail Clin,2006,2(1):71-80.
  • 4Campese V M,Tawatrous M,Bigazzi R,et al.Salt intake and plasma atrial natriuretic peptide and nitric in hypertension[J].Hypertension,1996,28(3):335-338.
  • 5Storlien L H,Oakes N D,Pan D A,et al.Syndromes of insulin resistance in the rat.Inducement by diet and ame-lioration with benfluorex[J].Diabetes,1993,42(3):457-462.
  • 6Bitto A,Altavilla D,Bonaiuto A,et al.Effects of aglycone genistein in a rat experimental model of postmenopausal metabolic syndrome[J].Endocrinol,2009,200(3):367-376.
  • 7Chun H W,Mei C C,An K S,et al.Determination of corticosterone in mouse plasma by a sweeping technique using micellar electrokinetic chromatography[J].J Chromatogr B,2003,785 (2):317-325.
  • 8Storlien L H,James D E,Burleigh K M,et al.Fat feeding causes widespread in vivo insulin resistance,decreased energy expenditure,and obesity in rats[J].Am J Physiol,1986,251(5 Pt1):576-583.
  • 9李长贵,宁光,陈家伦.胰岛素抵抗HepG2细胞模型的建立及鉴定[J].中国糖尿病杂志,1999,7(4):198-200. 被引量:34
  • 10Camp H S.Thiazolidinediones in diabetes:current status and future outlook[J].Curr Opin Investig Drugs,2003,4(4):406-411.

二级参考文献15

  • 1[1]Diamant M,Lamb HJ,Smit JW.Diabetic cardiomyopathy in uncomplicated type 2 diabetes is associated with the metabolic syndrome and systemic inflammation.Diabetologia,2005,48:1669-1670.
  • 2[2]Korrald C,Elvenes OP,Myrmel T,et al.Myocardial substrate metabolism influences left ventricular energtics in vivo.Am J Physiol,2000,278:H1345-H1351.
  • 3[3]Longnus SI,Wambolt RB,Barr RL,et al.Regulation of myocardial fatty acid oxidation by sustrate supply.Am J Physiol,2001,281:H1561-H1567.
  • 4[4]Lopaschuk GD.Abnormal mechanical functionin diabete:relationship to altered myocardial carbohydrate/lipid metabolism.Coron Artery Dis,1996,7:116-123.
  • 5[5]Saltiel AR,Pessin JE.Insulin signalling pathways in time and space.Trends Cell Biol,2002,12:65-71.
  • 6[6]Shepherd PR.Mechanisms regulating phosphoinositide 3-kinase signaling in insulin-sensitive tissues.Acta Physiol Scand,2005,183:3-12.
  • 7[7]Jope RS,Johnson GVW.The glamour and gloom of glycogen synthase kinase-3.Trends Biochem Sci,2004,29:95-102.
  • 8[8]Eldar-Finkelman H.Glycogen synthase kinase 3:an emerging therapeutic target.Trends Mol Med,2002,8:126-132.
  • 9[9]Henriksen EJ,Kinnick TR,Teachey MK,et al.Modulation of muscle insulin resistance by selective inhibition of GSK-3 in Zucker diabetic fatty rats.Am J Physiol Endocrinol Metab,2003,284:E892-E900.
  • 10[10]Bauma CA,Ripon V,Kanzaki M,et al.CAP defines second signalling pathway required for insulin-stimulated glucose transport.Nature,2000,407:202-207.

共引文献33

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部