期刊文献+

采用偏微分方程的磁共振弥散张量各向异性扩散滤波去噪

Diffusion Tensor Magnetic Resonance Imaging Denoising Using Anisotropic Partial Differential Function Filter
下载PDF
导出
摘要 弥散张量磁共振成像(DTI)是无创研究大脑白质结构及其他人体纤维状组织结构的主要工具。由于合成DTI数据的弥散加权成像数据(DWI)易受噪声干扰,需要有效去噪以保证DTI数据精度和后续应用的实现。使用各向异性扩散滤波理论,综合考虑各方向通道DWI数据的几何形态和结构特点,重构其特征向量和特征值,获得统一平滑的结构张量,以期在有效去噪的基础上最大程度地保持DTI数据几何结构和特征。利用所提出方法在合成弥散张量数据上进行仿真,并在真实脑部DTI数据上进行实验。仿真和实验结果表明,该方法能有效减少噪声对DTI数据的影响,较之现有的时频分析去噪方法,可更准确地恢复DTI数据,减少主分量方向的偏差和部分各向异性值的误差。 Diffusion tensor magnetic resonance imaging(DTI) is the main non-invasive utility to reveal the information of local diffusivity of white matter and other fibrous human tissues.Because the diffusion weighted image(DWI) which is used to acquire DTI is sensitive to noise,effective noise removal is required to improve the accuracy of the DTI data and its subsequent applications.Instead of denoising the DWI in different direction separately,an anistropic filtering method synthetically considering the structure information and characteristic of the DTI was proposed in this paper.The eigenvalue and eigenvector of the smoothing structure tensor were reconstructed to remove the noise and keep the structure characteristic simultaneously.Simulations using a synthetic DTI dataset and experiments using an in vivo brain DTI dataset were performed.The results demonstrated that the noise could be removed significantly and the direction bias of the main eigenvector and the error of fractional anisotropy were reduced effectively compared with the common methods.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2010年第4期481-485,共5页 Chinese Journal of Biomedical Engineering
基金 四川省教育厅科技创新重大培育项目(09ZZ004)
关键词 弥散张量磁共振成像 各向异性扩散滤波 偏微分方程 diffusion tensor magnetic resonance imaging anisotropic smoothing partial differential equation
  • 相关文献

参考文献9

  • 1Basser P, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaglng[ J]. Biophysical Journal, 1994, 66 (1): 259-267.
  • 2Susumu M, Zhang Jiangyang. Principles of diffusion tensor primer imaging and its applications to basic ncuroscience research[J]. Neuron, 2006, 51(5): 527-539.
  • 3Heemskerk AM, Sinha TK, Wilson KJ, et al. Quantitative assessment of DTI-based muscle fiber tracking and optimal tracking parameters[ J]. Magn Reson Med, 2009, 61 (2):467 -72.
  • 4Fechete R, Demco DE, Eliav U, et al. Self-diffusion anisotropy of water in sheep Achilles tendon[ J]. NMR in Biomedicine, 2005, 18(8): 577-586.
  • 5Anderson AW. Theoretical analysis of the effects of noise on diffusion tensor imaging[ J]. Magnetic Resonance in Medicine, 2001, 46(6) :1174 - 1188.
  • 6Parker GJ, Schnabel JA, Symms MR, et al. Nonlinear smoothing for reduction of systematic and random errors in diffusion tensor imaging[ J], J. Magn Reson Imag, 2000,11 : 702 - 710.
  • 7白衡,高玉蕊,王世杰,罗立民.DTI扩散张量的一种稳健估计方法[J].计算机研究与发展,2008,45(7):1232-1238. 被引量:5
  • 8Pennec X, Fillard P, Ayache N. A Riemannian framework for tensor computing[ J]. Int J Comput Vis, 2006,66 : 41 - 66.
  • 9Weickert J. Coherence-enhancing diffusion filtering[ J]. Int J Comput Vis, 1999,31:111- 127.

二级参考文献11

  • 1白衡,王世杰,罗立民,张宗军.基于双树复数小波降噪的扩散张量估计[J].信号处理,2007,23(3):330-335. 被引量:3
  • 2Basser P J, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging [J]. Biophysica, 1994, 66(1): 259 -267
  • 3Basser P J, Pajevic S, Pierpaoli C, et al. In vivo fiber tractography using DT MRI data[J]. Magnetic Resonance Medicine, 2000, 44(4): 625-632
  • 4Poupon C, Mangin J, Frouin V, et al. Regularization of MR diffusion tensor maps for tracking brain white matter bundles [G]//Proc of MICCAI, LNCS1496. Berlin: Springer, 1998: 489-498
  • 5Westin C, Maier S E, Khidhir B, etal. Image processing for diffusion tensor magnetic resonance imaging [G]//Proc of MICCAI, LNCS1679. Berlin: Springer, 1999:441-452
  • 6Weickert J, Brox T. Diffusion and regularization of vectorand matrix valued images, 58 [R]. Saarland; Department of Mathematics, Saarland University, 2002
  • 7Welk M, Feddern C, Burgeth B, et al. Median filtering of tensor-valued images [G]//Proc of German Conf on Pattern Recognition, LNCS2781. Berlin: Springer, 2003:17-24
  • 8Welk M, Weickert J, Becker F, et al. Median and related local filters for tensor-valued images, 135 [R]. Saarbrucken, Germany: Saarland University, 2005
  • 9Mangin J, Poupon C, Clark C, et al. Distortion correction and robust tensor estimation for MR diffusion imaging [J]. Medicine Image Analysis, 2002, 6(3): 191-198
  • 10Arslan O, Edlund O, Ekblom H. Algorithms to compute CM and S-estimates for regression [J]. Metrika, 2002, 55 (1): 37-51

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部