摘要
在微分流形的入门教学中,经常用同一个记号来表示定义在不同空间中的坐标函数,这个细小的问题给初学者造成不便.本文介绍了解决这一问题的几种做法并作了比较,主张严格仔细地区分有关记号以有利于对切向量的理解,同时保留传统的微分流形上自然基底的习惯记号.
In some introductory books of differentiable manifolds, a same notation is usually used to define coordinate functions in different spaces. This minute issue may cause problems to beginners. To clean up this trouble, several methods are presented and a descriptive research is made. the best way is to preserve the traditional notation of natural basis, and make differences among other notations, so that, the tangent vector can be catched properly.
出处
《高等数学研究》
2010年第4期85-87,共3页
Studies in College Mathematics
关键词
微分流形
坐标函数
切向量
自然基底
differentiable manifold
coordinate function
tangent vector
natural basis