摘要
提出了一种新的迭代非局部平均滤波的图像去噪方法.权系数的计算依赖每次迭代更新得到的图像,同时对迭代更新后得到的图像进行加权平均.这样就避免了权系数的计算以及加权平均所用的图像的不一致所带来的图像边缘模糊以及对比度不清晰的现象.还证明了新的迭代方法满足极大极小原则.实验结果表明,该方法去噪的同时能较好地保持图像的边缘以及细小结构.
An iterative non-local means filter for image denoising is proposed.For the proposed method,the computation of weights depends on the updated image,and for each iteration the weighted averaging is performed over the updated image.This avoids the problems that the edge of the image is blurry and that the image is not clear,which are caused by the disagreement of the computation of the weight coefficients and the computation of the averaging.The max-min principle is also guaranteed for the proposed iterative non-local means filter.Numerical examples illustrate that the proposed method removes noise well while preserving image edges and fine details.
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2010年第4期722-725,736,共5页
Journal of Xidian University
基金
国家自然科学基金资助项目(NSFC60872138)
关键词
非局部滤波
加权平均
扩散方程
图像去噪
non-local means filter
weighted averaging
diffusion equation
image desnoising