期刊文献+

levy模型下复合期权的定价 被引量:2

Price of Compound Option under Levy Model
下载PDF
导出
摘要 假设风险资产价格过程遵循levy模型,在股票期望收益率、波动率和无风险利率均为确定性时间函数的前提下,利用鞅方法和测度变换给出了levy模型下复合期权的一般定价公式和精确定价公式. In this paper the risky asset price is assumed to follow levy process.Some general and accurate formulaes for the exotic options is then obtained by applying martingale methods and the change of probability measure when the expected rate of return and volatility of risky asset and unrisky interest are all determined time-dependent functions.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第4期103-106,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 南京工程学院科研基金项目(KXJ08092)
关键词 LEVY过程 等价鞅测度 复合期权 levy process variant of measure equivalent martingale measure compound option
分类号 O029 [理学]
  • 相关文献

参考文献12

  • 1Blacd F, Scholes M. The Pricing of Options and Corporate Liabilities [J]. Journal of Political Economy, 1973, (3) : 637 - 654.
  • 2Lo A W, Mackinlary A C. Stock Market Prices Do Not Follow Random Walks: Evidence from a Simple Specificatitest [J]. Review of Financial Studies, 1988, (1): 41 -66.
  • 3Knut K, Aase. Contingent Claims Valuationwhen the Security Price is Combination of an Ito Process and a Rando Point Process[J]. Stochastic processes and their Applications, 1988, 28(2) : 185 - 220.
  • 4Merton R C. Continuous-Time Finance [M]. Cambridge: Blackwell Publishers, 1990.
  • 5Martin Schweizer. Option Heading for Semi-martingales [J]. Stochastic Processes and Their Application, 1991, (3) 339 - 360.
  • 6Chan T. Pricing Contingent Claims on Stocks Driven by Levy Processes [J]. Annals of Appl Prob, 1999, 9(2) : 5 - 528.
  • 7Kallsen Jan. Optimal Portfolios for Exponential Levy Processes [J]. Math Meth Oper Res, 2000, 51(3) : 357 - 37.
  • 8Jean Luc Prigent. Option Pricing with a General Marked Point Process [J]. Mathematics of Operations Research, 2001, 26(1) : 50- 66.
  • 9David Applebaum. Levy Process and Stochastic Calculus [M]. Camhridge: Cambridge University Press, 2004.
  • 10藏爱琴.levy模型下亚式期权的定价和性质[D].南京:南京师范大学,2007.

二级参考文献5

共引文献4

同被引文献13

  • 1LI Shu-jin,LI Sheng-hong.A generalization of exotic options pricing formulae[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(4):584-590. 被引量:3
  • 2覃思乾.基于二叉树模型期权定价的矩阵形式算法[J].广西师范学院学报(自然科学版),2006,23(1):26-30. 被引量:6
  • 3IN F, KIM S. The hedge ratio and the empirical relationship between the stock and futures markets: a new ap- proach using wavelet analysis [J]. J Bus, 2006, 79(2): 799-820.
  • 4SWITZER L N, FAN Haibo. Screen based trading, the cost of carry, and futures market efficiency [J]. Risk Decis Anal, 2009, 1(1): 57-71.
  • 5BARANY E, BECCAR VAREI.A M P, FLORESCU I, et al. Detecting market crashes by analysing long-mem- ory effects using high-frequency data [J]. Quant Finane, 2012, 12(4): 623-634.
  • 6CONT R, KOKHOLM T. A consistent pricing model for index options and volatility derivatives [J]. Math Financ, 2013, 23(2).- 248-274.
  • 7JONSSON H, SCHOUTENS W. Single name credit default swaptions meet single sided jump models [J]. Rev Deriv Res, 2008, 11(1/2) : 153-169.
  • 8RACHEV S T, KIM Y S, BIANCHI M L, et al. Financial models with levy processes and volatility clustering [M]. New York: John Wiley & Sons, 2011:123-167.
  • 9[美]史蒂文·E·施里夫.金融随机分析:第2卷:连续时间模型[M].陈启宏,陈迪华,译.上海:上海财经大学出版社,2008:383-404.
  • 10BJORK T. Arbitrage theory in continuous time [M]. 2nd Ed. Oxford: Oxford University Press, 2004: 133- 153.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部