期刊文献+

带两类离散时间风险过程的期望折现罚金函数

The Expected Discounted Penalty Function for the Two Classes of Discrete Time Risk Processes
下载PDF
导出
摘要 对带两种独立类型的保险风险的离散时间风险模型,我们假设第一类的索赔间隔时间是服从几何分布的随机变量,第二类索赔间隔时间是两个相互独立的各自服从几何分布的随机变量的总和,当两类的赔款服从几何分布时可以得到Gerber-Shiu期望折现罚金函数的表达式.由定义的Dickson-Hipp算子,得到罚金函数的简化表达式. To the discrete risk model of the two independent classes of insurance risks,in the author’s opinion,it is assumed that the claiming spacing interval of the first class is the random variable submitting to the geometric distribution,and the claiming spacing interval of the second class is the sum of the two mutually independent random variables submitting to geometric distribution.The Gerber-Shiu expected stochastic premium expression can be obtained when the indemnity of the two classes obey the geometric distributions.Defined by the Dickson-Hipp operator,the simplified expression of the penalty function is obtained.
作者 尹彦红
机构地区 邢台学院数学系
出处 《衡水学院学报》 2010年第4期3-4,25,共3页 Journal of Hengshui University
关键词 离散时间模型 几何分布 罚金函数 discrete time model geometric distribution penalty function
  • 相关文献

参考文献3

  • 1DICKSON D C M.On a class of renewal risk process[J].North American Actuarial Journal,1998,2(3):60-68.
  • 2LI S.On a class of discrete time renewal risk model[J].Scand.Actuarial J.,2005(4):241-260.
  • 3LI S,LU Y.On the expected discounted penalty functions for two classes of risk processes[J].Mathematics and Ecomomics,2005(36):179-193.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部