期刊文献+

基于TAN的文本自动分类框架 被引量:1

Automatic Text Categorization Framework Based on TAN
下载PDF
导出
摘要 介绍一种树状朴素贝叶斯(TAN)文本分类模型,对该模型存在的阈值选取问题进行实验分析,提出不需要进行阈值选取的TAN文本自动分类框架(ATAN)。在中英文非均匀类分布测试集上对基于ATAN的2种算法与手动选取阈值达到最优性能的BL-TAN进行对比,结果表明基于ATAN的算法具有更高性能。 This paper introduces a Tree-Augmented Na?ve Bayes(TAN) text categorization model,analyzes its problem of threshold selection,and proposes an Automatic TAN(ATAN) text categorization framework.Two algorithms based on ATAN are compared to the BL-TAN with the best classification performance at a specified threshold both on Chinese and English imbalanced datasets.Results show that algorithms based on ATAN have higher performance than BL-TAN.
作者 刘佳 贾彩燕
出处 《计算机工程》 CAS CSCD 北大核心 2010年第16期36-38,41,共4页 Computer Engineering
基金 高等学校博士学科点专项科研基金资助项目(2007004038)
关键词 文本分类 树状朴素贝叶斯模型 贝叶斯网络 text categorization Tree-Augmented Naive Bayes(TAN)model Bayesian network
  • 相关文献

参考文献7

  • 1Cooper G.Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks[J].Artificial Intelligence,1990,42(2/3):393-405.
  • 2Friedman N,Geiger D,Goldszmidt M.Bayesian Network Classi-fiers[J].Machine Learning,1997,29(2/3):131-163.
  • 3石洪波,黄厚宽,景丽萍.改进的TAN构造算法及其文本分类[J].太原师范学院学报(自然科学版),2002,1(1):20-26. 被引量:1
  • 4Mccallum A,Nigam K.A Comparison of Event Models for Na(i)ve Bayes Text Classification[C] //Proc.of AAAI'98 Workshop on Learning for Text Categorization.[S.l.] :AAAI Press,1998.
  • 5Pernkopf F,Bilmes J.Discriminative Versus Generative Parameter and Structure Learning of Bayesian Network Classifiers[C] //Proc.of the 22nd International Conference on Machine Learning.Bonn,Germany:[s.n.] ,2005.
  • 6Keogh E,Pazzani M.Learning Augmented Bayesian Classifiers:A Comparison of Distribution-based and Classification-based Approaches[C] //Proc.of the 7th International Workshop on Artificial Intelligence and Statistics.San Francisco,USA:Morgan Kaufmann Publishers,1999.
  • 7Yang Yiming,Liu Xin.A Re-examination of Text Categorization Methods[C] //Proc.of ACM Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,1999.

二级参考文献15

  • 1[1]Langley P, Iba W, Thompson K.An analysis of Bayesian classifiers. In Proceedings Tenth National Conference on Artificial Intelligence, 1992,223~228. Menlo Park, CA:AAAI Press
  • 2[2]Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Machine Learning,1997,29:131~163
  • 3[3]Pearl J.Probabilistic Reasoning in Intelligent Systems. San Francisco, CA: Morgan Kaufman
  • 4[4]Cheng J, Bell D A, Liu W. Learning Belief Networks from Data: An Information Theory Based Approach, Proceedings of the Sixth ACM International Conference on Information and Knowledge Management, 1997
  • 5[5]Chickering D M.Learning Bayesian networks is NP-complete, In AI & STATV, 1996
  • 6[6]Cheng J,Greiner R. Comparing Bayesian Network Classifiers, In K. B. Laskey and H. Prade(Eds.), Proceedings of the fifteenth conference on uncertainty in artificial intelligence, 1999,101~108. Morgan Kaufmann.
  • 7[7]Eamonn E J,Pazzani M J. Learning Augmented Bayesian Classifiers: A Comparison of Distribution-based and Classification-based approaches, Uncertainty 99, 7th Int'l workshop on AI and statistics, Ft Lauderdale, Florida,225~230
  • 8[8]Mccallum A,Nigam K.A Comparison of Event Models for Naive Bayes Text Classification, http://citeseer.nj.nec.com/mccallum98comparison.html
  • 9[9]Yang Y. An evaluation of statistical approaches to text categorization[J]. Journal of Information Retrieval, 1999, 1(1/2):67~88
  • 10[10]Lam W,Ho C Y.Using a generalized instance set for automatic text categorization, Proceedings of the 21th Ann Int ACM SIGIR Conference on Research and Development in Information Retrieval, 1998,81~89

同被引文献2

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部