期刊文献+

IP流量分类算法中特征选择作用分析 被引量:6

Analysis of Feature Selection Effect on IP Traffic Classification Algorithms
下载PDF
导出
摘要 基于流的特征并使用机器学习技术进行网络流量分类是目前网络流量分类的主流技术。由于许多流的特征可用于流分类,其中有许多是不相关和冗余的特征,因此特征选择对算法性能的优化具有重要的作用。将基于过滤的特征选择方法应用于C4.5、Bayesnet、NBD、NBK等分类算法,实验结果表明该方法在无损于分类准确性的同时能够改进计算性能。 The current study is to use Machine Learning(ML) techniques and classify Internet traffic based on per-flow features.Since a lot flow features can be used for flow classification and there are many irrelevant and redundant features among them,feature selection plays a vital role in algorithm performance optimization.This paper uses two filter-based feature selection methods for classification algorithms such as C4.5,Bayesnet,NBD,NBK.Experimental results show the approach can improve computational performance without negative impact on classification accuracy.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第16期68-70,共3页 Computer Engineering
基金 国家"863"计划基金资助项目(2007AA01Z151)
关键词 特征选择 IP流量分类 机器学习 feature selection IP traffic classification Machine Learning(ML)
  • 相关文献

参考文献5

  • 1Kim H,Claffy K,Fomenkov M,et al.Internet Traffic Classification Demystified:Myths,Caveats,and the Best Practices[C] //Proc.of ACM CONEXT'08.Madrid,Spain:ACM Press,2008.
  • 2Moore A,Zuev D,Crogan M.Discriminators for Use in Flow-based Classification[D].London,UK:Department of Computer Science,Queen Mary,University of London,2005.
  • 3Moore A,Zuev D.Internet Traffic Classification Using Bayesian Analysis Techniques[C] //Proc.of ACM SIGMETRICS'05.Banff,Canada:ACM Press,2005.
  • 4Witten I H,Frank E.Data Mining:Practical Machine Learning Tools and Techniques[M].2nd ed.[S.1.] :Elsevier Inc.,2005.
  • 5Williams N,Zander S,Armitrage G.A Preliminary Performance Comparison of Five Machine Learning Algorithms for Practical IP Traffic Flow Classification[J].ACM SIGCOMM Computer Communication Review,2006,36(5):15-26.

同被引文献56

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部