期刊文献+

基于梯度和颜色特征的图像垃圾邮件过滤 被引量:4

Image Spam Filtering Based on Gradient and Color Feature
下载PDF
导出
摘要 提出以图像的梯度直方图和颜色直方图作为分类特征,分析最小二乘支持向量机(LS-SVM)算法以及该算法与传统SVM算法的区别,比较传统分类算法与LS-SVM算法的分类准确度,将LS-SVM算法用于图像垃圾邮件过滤。实验结果表明,该方法能提高图像垃圾邮件的检测率。 This paper proposes uses gradient histogram and color histogram as classification feature to analyze the difference between Least Square-Support Vector Machine(LS-SVM) algorithm and Support Vector Machine(SVM) algorithm.It compares the LS-SVM algorithm with several traditional algorithms and introduces LS-SVM algorithm into image spam filtering.Experimental results show that the method can improve the detection rate of image spam.
作者 刘芬 帅建梅
出处 《计算机工程》 CAS CSCD 北大核心 2010年第16期157-160,共4页 Computer Engineering
基金 国家"863"计划基金资助项目(2006AA01Z449)
关键词 图像垃圾邮件 最小二乘支持向量机 支持向量机 分类特征 image spam Least Square-Support Vector Machine(LS-SVM) Support Vector Machine(SVM) classification feature
  • 相关文献

参考文献5

  • 1Fumera G,Pillai I,Roli F.Spam Filtering Based on the Analysis of Text Information Embedded into Images[J].Journal of Machine Learning Research,2006,7:2699-2720.
  • 2耿技,万明成,程红蓉,周俊怡.基于文本区域特征的图像型垃圾邮件过滤算法[J].计算机应用,2008,28(8):1904-1906. 被引量:8
  • 3Bhaskar M,Saurabh N,Manish G,et al.Detecting Image Spam Using Visual Features and Near Duplicate Detection[C] // Proceedings of the 17th International Conference on World Wide Web.Beijing,China:[s.n.] ,2008:497-506.
  • 4Biggio B,Fumera G,Pillai I,et al.Image Spam Filtering by Content Obscuring Detection[C] //Proc.of the 4th Conference on Email and Anti-spam.California,USA:[s.n.] ,2007:2-3.
  • 5Suykens J A K,Gestel T Y,Brabanter J D,et al.Least Square Support Vector Machines[M].Singapore:World Scientific Publishing Co.,Pte.Ltd,2002.

二级参考文献12

  • 1许洋洋,袁华.一种基于内容的广告垃圾图像过滤方法[J].山东大学学报(理学版),2006,41(3):73-78. 被引量:9
  • 2Symantec. The state of spam a monthly report-february 2008 [ EB/ OL]. [ 2007 - 09 - 23] . http://www. symantec. com/.
  • 3JANG E. Learning to semantically classify email messages[ C]//Intelligent Control and Automation. Heidelberg: Springer Verlag, 2006:700 - 711.
  • 4HSIAO W F, CHANG T M, HUG H. A cluster-based approach to filtering spam under skewed class distributions[ C]// Proceedings of the 40th Hawaii International Conference on System Sciences. Waikoloa. Big Island: IEEE Computer Society, 2007:53 -60.
  • 5KIM H J, SHRESTHA J, KIM H N, et al. User action based adaptive learning with weighted bayesian classification for filtering spam mail[C]// Advances in Artificial Intelligence. Heidelberg: Springer Verlag, 2006:790-798.
  • 6FURMERA G, PILLAI I, ROLI F. Spam filtering based on the analysis of text information embedded into images[ J]. Journal of Machine Learning Research, 2006, 7:2699-2720.
  • 7WANG Z, JOSEPHSON W, LV Q, et al. Filtering image spam with near-duplicate detection[ EB/OL]. [2007 -08 -23]. http://www. ceas. cc/2007/papers/paper-35, pdf.
  • 8DONG JIANSHE, YUAN ZHANTING, ZHANG QIUYU, et al. A novel anti-spam scheme for image-based email[ C]//The 1st International Symposium on Data, Privacy, and E-commerce. New York: IEEE, 2007:520 - 522.
  • 9WU C T, CHENG K T, ZHU Q. Using visual features for anti-spam filtering [EB/OL]. [ 2007 - 08 - 23 ]. http://www. engineering. ucsb. edu/- zhuq/paper/icip05. pdf.
  • 10KIM J S, KIM S H, YANG H J, et al, Text extraction for spam-mail image filtering using a text color estimation technique[C]// New Trends in Applied Artificial Intelligence. Berlin: Springer, 2007: 105 - 114.

共引文献7

同被引文献59

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部