期刊文献+

多边形中心点向量的二次插值变形算法 被引量:3

Quadratic Interpolation Deformation Algorithm of Polygon Central Point Vector
下载PDF
导出
摘要 多不动点约束下的网格变形算法需要用户确定不动点和操作点,针对该问题,提出多边形中心点向量的二次插值变形算法。该算法根据源、目标多边形中心点向量间旋转经过的面积与2个向量间的差值建立相似度函数,在变形过程中采用二次贝塞尔插值方法,在对应过程中利用改进的动态规划算法。实验结果表明,该算法可减少变形过程中多边形内部扭曲的程度,且计算量小、对应时间短、变形效果自然。 Aiming at the problem that grid deformation algorithm needs fix point and operating point defined by user under multi-fix point restraining,this paper presents a quadratic interpolation deformation algorithm of polygon central point vector.According to the moving area of rotation between source and destination polygon central point vector and the difference between the corresponding vectors to build a similarity function.It adopts quadratic Bezier interpolation method in the process of deformation and uses improved dynamic programming algorithm in the process of corresponding.Experimental results show that this algorithm can reduce skew angle of polygon in the process of deformation,and it has low computation complexity,short corresponding time,natural deformation effect.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第16期189-191,共3页 Computer Engineering
关键词 多边形中心点向量 相似度函数 动态规划算法 二次贝塞尔插值变形 polygon central point vector similarity function dynamic programming algorithm quadratic Bezier interpolation deformation
  • 相关文献

参考文献8

  • 1Sederberg T W,Greenwood E.A Physically Based Approach to 2D Shape Blending[J].Computer Graphics,1992,26(2):25-34.
  • 2Sederberg T W,Gao Peisheng,Wang Guojin,et al.2D Shape Blending:An Instinct Solution to the Vertex Path Problem[J].Computer Graphics,1993,27(3):15-18.
  • 3Shapira M,Rappoport A.Shape Blending Using the Star-skeleton Representation[J].IEEE Transactions on Computer Graphics and Application,1995,15(3):44-51.
  • 4Alexa M,Daniel C O,Levin D.As-rigid-as-possible Shape Interpolation[C] //Proc.of the 27th Annual Conference on Computer Graphics and Interactive Techniques.New York,USA:ACM Press,2000.
  • 5Surazhsky V,Gotsman C.Guaranteed Intersection-free Polygon Mopping[J].Computer & Graphics,1991,25(1):67-75.
  • 6Surazhsky V,Gotsman C.Intrinsic Morphing of Compatible Triangulations[J].International Journal of Shape Modeling,2003,9(2):191-201.
  • 7李环,周帅锋,覃征.多不动点约束下的网格变形算法[J].计算机工程,2009,35(10):25-26. 被引量:6
  • 8汪国昭,白宝钢,童若锋.计算机动画的向量混合方法[J].计算机学报,1996,19(12):881-886. 被引量:14

二级参考文献5

  • 1Sederberg T W, Parry S R. Free-form Deformation of Solid Geometric Models[J]. Computer Graphics, 1986, 20(4): 151 - 160.
  • 2Coquillart S. Extended Free-form Deformation: A Sculpturing Tool for 3D Geometric Modeling[J]. Computer Graphics, 1990, 24(4): 187-193.
  • 3Lamousin H J, Waggesnspack W N. NURBS-based Free-form Deformation[J]. IEEE Computer Graphics and Its Aplications, 1994, 14(6): 59-65.
  • 4牛立新 刘旭敏 王功明.基于空间八叉剖分的面聚类网格简化算法.计算机工程,2007,33(20):228-238.
  • 5Jin X G,CADDM,1994年,4卷,1期,13页

共引文献18

同被引文献28

  • 1Philip J S,David H E.Geometric Tools for Computer Graphics[M].Beijing,China:Publishing House of Electronics Industry,2004.
  • 2Manber U.Introduction to Algorithms——A Creative Appro-ach[M].New York,USA:Addison-Wesley,1989.
  • 3Foley J D,van Dam A,Feiner S K,et al.Computer Graphics——Principles and Practice[M].2nd ed.New York,USA:Addison-Wesley,1990.
  • 4Feito F,Torres J C,Urena A.Orientation,Simplicity,and Inclusion Test for Planar Polygons[J].Computers&Graphics,1995,19(4):595-600.
  • 5Feito F,Torres J C.Inclusion Test for General Polyhedra[J].Computers&Graphics,1997,21(1):23-30.
  • 6Preparata F P,Shamos M I.Computational Geometry:An Intro-duction[M].New York,USA:Springer,1985.
  • 7Taylor G.Point in Polygon Test[J].Survey Review,1994,32(1):479-484.
  • 8Rueda A J,Feito F R,Rivero M.A Triangle-based Representation Forpolygons and Its Applications[J].Computers&Graphics,2002,26(5):805-814.
  • 9Wang Wencheng,Li Jing,Wu Enhua.2D Point-in-polygon Test by Classifying Edgesinto Layers[J].Computers&Graphics,2005,29(3):427-439.
  • 10Huang Chongwei,Shih T Y.On the Complexity of Point-in-polygonalgorithms[J].Computers&Geosciences,1997,21(1):109-118.

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部