期刊文献+

面向重构目标的控制系统可重构性 被引量:6

Reconfiguration-Goal-Oriented Control System Reconfigurability
下载PDF
导出
摘要 为了给可重构系统控制律重构综合提供设计依据,研究了线性化系统的控制可重构性分析问题.面向控制系统定义了5个重构目标:稳定目标、定点恢复弱目标、轨迹恢复强目标、状态恢复直接目标和故障隐蔽目标.根据控制要求的强度,通过故障隐蔽目标,依次给出了线性闭环控制系统的稳定、弱重构、强重构和直接重构目标的可重构性条件.稳定(镇定)目标的重构条件主要从能控能观结构特性方面考虑,其它几个目标则以秩条件的形式给出.以一个线性MIMO系统的例子来分析可重构性,验证了已得到的重构条件的正确性. For the sake of providing design insights into the synthesis of controller reconfiguration for reconfigurable systems,control reconfigurability of linearized systems is analyzed.Oriented to control systems,five reconfiguration goals are identified,that is,stabilization goal,setpoint recovery weak reconfiguration goal,trajectory recovery strong reconfiguration goal,state restoration direct reconfiguration goal and fault-masking goal.According to the strength of control requirements,reconfigurability of stabilization,weak,strong,and direct goals via the fault-masking one for the closed-loop linear control system are presented respectively.With regard to the stabilization goal,controllability and observability structural properties are mainly considered,and reconfigurability conditions are given in the form of rank conditions for others.Reconfigurability analysis is illustrated by a linear multi-input multi-output(MIMO) system,validating the achieved reconfiguration conditions.
出处 《信息与控制》 CSCD 北大核心 2010年第4期391-396,共6页 Information and Control
基金 国家自然科学基金资助项目(60974070) 辽宁省自然科学基金资助项目(20082026)
关键词 重构目标 可重构性 能控能观结构分解 秩条件 reconfiguration goal reconfigurability controllability and observability structural decomposition rank condi-tion
  • 相关文献

参考文献9

  • 1Richter J H, Weiland S, Heemels W P M H, et al. Decouplingbased reconfigurable control of linear systems after actuator faults[C]//10th European Control Conference. 2009: 2512- 2517.
  • 2Richter J H, Lunze J. H∞-based virtual actuator synthesis for optimal trajectory recovery[C]//7th IFAC Symposium. Piscataway, NJ, USA: IEEE, 2009: 1587-1592.
  • 3程一.线性多变量系统执行器和传感器的功能冗余性分析[J].信息与控制,1990,19(1):12-17. 被引量:8
  • 4程一.提高闭环控制系统的可靠性——重构、冗余、鲁棒性问题综述[J].控制与决策,1989,4(5):57-64. 被引量:3
  • 5Wu N E, Zhou K, Salomon G. Control reconfigurability of LTI systems[J]. Automatica, 2000, 36(3): 1767-1771.
  • 6Gehin A L, Staroswiecki M. Re.configuration analysis using generic component models[J]. 1EEE Transactions on Systems, Man and Cybernetics: Part A, 2008, 38(3): 575-583.
  • 7Sebek M, Bisiacco M, Fornasini E. Controllabi/ity and reconstructibility conditions for 2-D systems[J]. IEEE Transactions on Automatic Control, 1988, 33(5): 496-499.
  • 8Kaczorek T. Local control/ability, reachability, and reconstructibility of the general singular model of 2-D systems[J]. IEEE Transactions on Automatic Control, 1992, 37(10): 1527- 1530.
  • 9Trangbaek K, Stoustrup J, Bendtsen J. Stable controller retonfiguration through terminal connections[C]//17th IFAC World Congress. Piscataway, NJ, USA: IEEE, 2008: 331-335.

二级参考文献1

共引文献9

同被引文献52

  • 1Rauch H E. Autonomous control reconfiguration [ J ]. IEEE Control Systems, 1995,15 ( 12 ) :37 - 48.
  • 2Blanke M, Kinnaert M, Lunze J, et al. Diagnosis and FTC [ M ]. 2nd ed. Berlin : Springer-Verlag ,2006 : 18 - 22.
  • 3Richter J H, Lunze J. Markov-parameter-based control reconfiguration by matching the I/O-behavior of the plant [ C ]//Proceedings of European Control Conference. Kos, 2007:2942 - 2949.
  • 4Tran T H, Stursberg O, Engell S. Reconfiguration of discretely controlled hybrid systems for changing specifications [ C ]//Proceedings of 1st IFAC Workshop on Dependable Control of Discrete Systems,2007:247 -252.
  • 5Boskovic J D, Jackson J A, Mehra R K. Multiple-model adaptive FTC of a planetary lander [ J ]. Journal of Guidance,Control, and Dynamics,2009,32 ( 6 ) : 1812 - 1826.
  • 6Yang F S,Guan S P. Controller reconfiguration design based on stability analysis [ C ]//Proceedings of 22nd Chinese Control and Decision Conference. Xuzhou ,2010:690 - 695.
  • 7Lunze J, Steffen T. Control reconfiguration after actuator failures using disturbance decoupling methods [ J ]. IEEE Transactions on Automatic Control,2006,51 (9) :1590 -1601.
  • 8Lombaerts T, Van Oort E, Chu Q P, Mulder J A, Joosten D. Online aerodynamic model structure selection and param- eter estimation for fault tolerant control. Journal of Guid- ance, Control, and Dynamics, 2010, 33(3): 707-723.
  • 9Alwi H, Edwards C, Stroosma O, Mulder J A. Evaluation of a sliding mode fault-tolerant controller for the El Al in- cident. Journal of Guidance, Control, and Dynamics, 2010, 33(3): 677-694.
  • 10Cao L, Chen X Q, Sheng T. Fault tolerant small satellite at- titude control using adaptive non-singular terminal sliding mode. Advances in Space Research, 2013, 51(12): 2374- 2393.

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部