期刊文献+

基于希尔伯特-施密特范数和交叉格莱姆的模型降阶方法 被引量:1

Approach to Model Reduction Based on Hilbert-Schmidt Norm and Cross-Gramian
下载PDF
导出
摘要 为了克服基于交叉格莱姆矩阵的最小信息损失模型降阶方法的局限性——信息损失性能指标不满足非负性和范数意义导致其物理意义不直观,利用Hankel奇异值以及交叉格莱姆的信息属性推导出希尔伯特-施密特范数与交叉格莱姆的关系,进一步推理得出希尔伯特-施密特范数意义的信息损失性能指标,并给出了基于希尔伯特-施密特范数和交叉格莱姆的模型降阶方法.最后,通过数值算例表明,降阶效果大为改善,截断误差更小,验证了新的信息损失指标的合理性和有效性. In order to overcome the limitation that the information loss performance index of the method for model reduction by minimizing information loss based on cross-Gramian matrix does not meet nonnegativity and any norm so that its physical meaning is not intuitive,the relationships between the Hilbert-Schmidt norm and the cross-Gramian are derived from the Hankel singular values of systems and the information property of the cross-Gramian.Via further theoretical reasoning,the information loss performance index based on Hilbert-Schmidt norm is obtained.Moreover,an approach to model reduction based on Hilbert-Schmidt norm and cross-Gramian is proposed.Finally,a numerical example is illustrated to verify that the performance of model reduction is greatly improved and the truncation error is smaller.Therefore,the rationality and the validity of the new performance index are proved.
出处 《信息与控制》 CSCD 北大核心 2010年第4期402-407,共6页 Information and Control
关键词 模型降阶 希尔伯特-施密特 范数 格莱姆 信息损失 model reduction Hilbert-Schmidt norm Gramian information loss
  • 相关文献

参考文献13

  • 1Mullis C T, Roberts R A. Synthesis of minimum round off noise fixed point digital filters[J]. IEEE Transactions on Circuits and Systems, 1976, 23(9): 551-562.
  • 2Moore B C. Principal component analysis in linear systems: Controllability, observability, and model reduction[J]. IEEE Transactions on Automatic Control, 1981, 26(1): 17-32.
  • 3Glover K. All optimal Hankel-norm approximations of linear multivariable systems and their L^∞-error bounds[J]. International Journal of Control, 1984, 39(6): 1115-1193.
  • 4Antoulas A C. Approximation of large-scale dynamical systems[M]. Philadelphia, PA, USA: SIAM, 2005.
  • 5Leland R. Reduced-order models and controllers for continuoustime stochastic systems: An information theory approach[J]. IEEE Transactions on Automatic Control, 1999, 44(9): 1714- 1719.
  • 6Zhang H, Sun Y X. Information theoretic methods for stochastic model reduction based on state projection[C]//American Control Conference. Piscataway, NJ, USA: IEEE, 2005: 2596-2601.
  • 7曹清,章辉,孙优贤.改进的用于模型降阶的最小信息损失方法[J].信息与控制,2005,34(4):423-428. 被引量:6
  • 8Tai X, Zhang H, Sun Y X. A minimum output information loss method for stochastic model reduction[C]//6th World Congress on Control and Automation. Piscataway, NJ, USA: IEEE, 2006: 1186-1190.
  • 9付金宝,章辉,孙优贤.基于交叉格莱姆矩阵的最小信息损失模型降阶方法[J].浙江大学学报(工学版),2009,43(5):817-821. 被引量:2
  • 10Fernado K V, Nicholson H. On the structure of balanced and other principal representations of SISO systems[J]. IEEE Transactions on Automatic Control, 1983, 28(2): 228-231.

二级参考文献13

  • 1曹清,章辉,孙优贤.改进的用于模型降阶的最小信息损失方法[J].信息与控制,2005,34(4):423-428. 被引量:6
  • 2LELAND R. Reduced-order models and controllers for continuous time stochastic systems: an information theory approach [J]. IEEE Transactions on Automatic Control, 1999, 44(9): 1714-1719.
  • 3ZHANG Hui, SUN You-xian. Information theoretic methods for stochastic model reduction based on state projection [C]// 2005 American Control Conference. Oregon: [s.n.], 2005: 2596-2601.
  • 4FERNADO K V, NICHOLSON H. On the structure of balanced and other principal representations of SISO systems [J]. IEEE Transactions on Automatic Control, 1983, AC-28(2): 228-231.
  • 5FERNADO K V, NICHOLSON H. Minimality of SISO linear systems [J]. Proeeedings of IEEE, 1982, 70(10) : 1241 - 1242.
  • 6WGS. Benchmarks examples for model reduction of linear time invariant dynamical systems [EB/OL]. [2007-10]. http://www.iem. tu-los.de/NICONET/index. html.
  • 7WGS. A collection of benchmarks examples for model reduction of linear time invariant dynamical systems[EB/OL].[2007-10]. http: //www. icm. tu-bs.de/ NICONET/index. html.
  • 8Moore B C. Principal component analysis in linear systems: controllability, observability, and model reduction [ J ]. IEEE Transactions on Automatic Control, 1981,26( 1 ) : 17 -32.
  • 9Yousuff A, Wagie D A, Skehon R E. Linear system approximation via covariance equivalent realizations [ J]. Journal of Mathematical Analysis and Applications, 1985, 106( 1 ) :91 - 115.
  • 10Leland R. Reduced-order models and controllers for continuoustime stochastic systems: an information theory approach [ J ].IEEE Transactions on Automatic Contrail, 1999,44 ( 9 ) : 1714 -1719.

共引文献5

同被引文献10

  • 1Varga A. RASP model order reduction programs [ R ]. Univer- sity of Bochum and DLR-Oberpfaffenhofen, TR R88-92,1992.
  • 2Varga A. Model reduction software in the SLICOT library [ A ]. The Kluwer International Series in Engineering and Computer Science ( Vol. 629 ) : Applied and Computational Control, Signals and Circuits [ C ]. Boston: Kluwer Academic Puhlishers .2001.
  • 3Volkwein S. Proper orthogonal decomposition and singular value decomposition[ R ]. Institut fur Mathematik of Universi- tat Graz SFB-Preprint No. 153,1999.
  • 4Chan D L, Agarwal R K. State feedback stabilization of an e- lastic aircraft motion [ A ]. Proceedings of the AIAA Confer- ence on Guidance, Navigation, and Control[ C ]. Denver, CO, 2000-08.
  • 5Sibok Y, Newman B A. Flight control leverage on crack growth in a flexible aircraft [ A ]. Proceedings of the AIAA Conference Guidance, Navigation, and Control [ C ]. Denver, CO ,2000-08.
  • 6Newman B A, Buttrill C. Conventional flight control for an aeroelastic relaxed stability high speed transport[ A]. Pro- ceedings of the AIAA Conference on Guidance, Navigation and Control [ C ]. Baltimore, Maryland, 1995-08 : 717 - 726.
  • 7姜立强,郭铮,何鸣.一种近似广义奇异摄动模型降阶算法[J].弹箭与制导学报,2008,28(1):96-98. 被引量:2
  • 8刘宝,章卫国,李广文,宁东方.弹性飞机的建模与模型降阶方法研究[J].计算机仿真,2008,25(5):29-32. 被引量:9
  • 9宗节保,段柳云,王莹,段柳浠,李昕.基于MATLAB GUI软件制作方法的研究与实现[J].电子设计工程,2010,18(7):54-56. 被引量:62
  • 10张力军,曾建平,程鹏.广义奇异摄动降阶方法在控制器降阶中的应用[J].航空学报,2002,23(2):125-129. 被引量:2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部