期刊文献+

一种基于改进的量子神经网络的语音降噪方法 被引量:6

A Method to Decrease Noise in Speech Based on Improved Quantum Neural Networks
下载PDF
导出
摘要 利用一种改进的量子神经网络(IPSO-QNN)在时域上对语音信号进行降噪处理,重点改进了QNN所涉及到的学习算法.针对粒子群算法本身存在早熟的不足,提出了一种改进的粒子群优化算法(IPSO).通过对早熟粒子的速度和位置叠加随机数据,使其离开局部最优,从而使该算法具有更强的寻优能力.利用IPSO对量子神经网络的参数进行训练和学习,建立了比较高效的基于改进的量子神经网络的语音信号滤波器,并通过Matlab软件建立实验平台,实验结果表明,新算法充分利用了量子神经计算的快速性以及粒子群算法的全局寻优能力,从而使该语音信号滤波器具有良好的降噪性能. The IPSO-QNN is applied to decreasing noise of speech signal in the time domain,and the emphasis is put on the improvement of the learning algorithm of QNN(quantum neural network).Aiming at the inherent shortcomings of premature with particle swarm optimization(PSO),an improved PSO(IPSO) is presented.The new arithmetic has better optimization performance by adding random data to premature particles’ speed and position to make the premature particles leave the local optimum.A more efficient speech signal filter based on IPSO-QNN is established by using IPSO in learning and training of the parameters of QNN,a experimental platform is established using Matlab software,and experimental results show that the new arithmetic make best use of faster quantum neural computation and the global optimization ability of PSO,so that the speech signal filter has good performance in decreasing noise.
作者 付丽辉
出处 《信息与控制》 CSCD 北大核心 2010年第4期466-471,共6页 Information and Control
关键词 语音信号 降噪 量子神经网络 粒子群算法 speech signal noise decreasing quantum neural network(QNN) particle swarm optimization(PSO)
  • 相关文献

参考文献6

二级参考文献55

共引文献55

同被引文献64

  • 1景小宁,李全通,南建国.B样条神经网络的算法设计及应用[J].计算机应用与软件,2005,22(7):93-96. 被引量:6
  • 2马义德,齐春亮,杜鸿飞.一种基于分类的改进BP神经网络图像压缩方法[J].兰州大学学报(自然科学版),2005,41(4):70-72. 被引量:13
  • 3谢可夫,罗安.量子衍生自适应中值滤波[J].计算机工程与应用,2006,42(36):11-13. 被引量:3
  • 4聂铁军 侯谊 郑介庸.数值计算方法[M].西安:西北工业大学出版社,1990..
  • 5Han K H, Kim J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(6): 580-593.
  • 6Defoin P M, Stefan S, Nikola K. Quantum-inspired evolutionary algorithm: A multimodel EDA[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(6): 1218-1231.
  • 7Han K H, Kim J H. On the analysis of the quantum-inspired evolutionary algorithm with a single individual[C]// IEEE Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 2006: 2622-2629.
  • 8Chakraborti N, Mishra P, Erko S. A study of the Cu clusters using gray-coded genetic algorithms and differential evolution[J]. Journal of Phase Equilibria and Diffusion, 2004, 25(1): 16-21.
  • 9Wang L, Li L. An effective hybrid quantum-inspired evolutionary algorithm for parameter estimation of chaotic systems[J]. Expert Systems with Applications, 2010, 37(2): 1279-1285.
  • 10Zhang G. Quantum-inspired evolutionary algorithms: A survey and empirical study[J]. Journal of Heuristics, 2011, 17(3): 303- 351.

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部