期刊文献+

高置信度关联规则的挖掘 被引量:5

Mining high confidence association rules
下载PDF
导出
摘要 传统的关联规则和基于效用的关联规则,会忽略一些支持度或效用值不高、置信度(又称可信度)却非常高的规则,这些置信度很高的规则能帮助人们满足规避风险、提高成功率的期望。为挖掘这些低支持度(或效用值)、高置信度的规则,提出了HCARM算法。HCARM采用了划分的方法来处理大数据集,利用新的剪枝策略压缩搜索空间。同时,通过设定长度阈值minlen,使HCARM适合长模式挖掘。实验结果表明,该方法对高置信度长模式有效。 Both traditional association rule mining and utility based association rule mining may neglect those rules whose support or utility is not high.Although these rules'support or utility is not very high,they can satisfy those people whose main goal is to avoid risks or raise the rate of success.In order to mine the rules with a low suppor(tor utility)and a high confidence,this paper proposes a new algorithm:HCARM.HCARM adopts partition method to handle large data,and prune out candidates by using new pruning strategy.In the meantime,by giving a proper length threshold minlen,HCARM can be fitter for long patterns mining.Experiments on synthetic data show that the method can get a good performance in mining high confidence long patterns.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第24期151-153,共3页 Computer Engineering and Applications
基金 教育部博士点基金(No.20060255006)~~
关键词 关联规则 高置信度 长模式 剪枝策略 association rule high confidence long pattern pruning strategy
  • 相关文献

参考文献6

  • 1Geng L,Hamilton H J.Interestingness measures for data mining: A survey[D].ACM Computing Surveys (CSUR), 2006,38 (3) : 61-93.
  • 2Agrawal R,Imielinski T, Swami A.Mining association rules between sets of items in lager databases[C]//Proc ACM SIGMOD Int'l Conf Management of Data, Washington, DC, May 1993: 207-216.
  • 3Yao H, Hamilton H J, Butz C J.A foundational approach to mining itemset utilities from databases[C]//Proceedings of SIAM International Conference on Data Mining,2004:482-486.
  • 4余光柱,李克清,易先军,邵世煌.一种基于划分的高效用长项集挖掘算法[J].计算机工程与应用,2007,43(29):11-13. 被引量:3
  • 5Savasere A, Omiecinsky E, Navathe S.An efficient algorithm for mining association rules in large databases[C]//21st Int'l Conf on Very Large Databases, San Francisco, 1995:432-444.
  • 6Liu Y, Liao W K, Choudhary.A fast high utility itemsets mining algorithm[C]//Proceedings of the First International Workshop on Utiliy-based Data Mining,2005:90-99.

二级参考文献13

  • 1Yao H,Hamilton H J.Mining itemset utilities from transaction databases[J].Data & Knowledge Engineering,2006,59:603-626.
  • 2Vroom V H.Work and motivation[M].New York:John Wiley,1964:8-28.
  • 3Lin TY,Yao YY,Louie E.Mining value added association rules[C]//Proceedings of PAKDD,2002:328-333.
  • 4Aumann Y,Lindell Y.A statistical theory for quantitative association rules[J].Journal of Intelligent Information Systems,2003,20:255-283.
  • 5Lu S F,Hu H P,Li F.Mining weighted association rules[J].Intelligent Data Analysis,2001,5:211-225.
  • 6Shen Y D,Zhang Z,Yang Q.Objective-oriented utility-based association mining[C]//Proceedings of the 2002 IEEE International Conference on Data Mining,2002:426-433.
  • 7Yao H,Hamilton H J,Butz C J.A foundational approach to mining itemset utilities from databases[C]//Proceedings 2004 SIAM International Conference on Data Mining,2004:482-486.
  • 8Yao H,Hamilton H J.A unified framework for utility based measures for mining itemsets[C]//Proceedings of the 2006 International Workshop on Utility-Based Data Mining,Philadelphia,PA,2006:28-37.
  • 9Liu Y,Liao W-K,Choudhary.A fast high utility itemsets mining algorithm[C]//Proceedings of the First International Workshop on Utiliy-based Data Mining,2005:90-99.
  • 10Han J W,Pei J,Yin Y,et al.Mining frequent patterns without candidate generation:a frequent pattern tree approach[J].Data Mining and Knowledge Discovery,2004,8:53-87.

共引文献2

同被引文献19

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部