期刊文献+

一种基于SVM和主动学习的图像检索方法 被引量:3

Image retrieval method based on SVMs and active learning
下载PDF
导出
摘要 主动学习已被证明是提升基于内容图像检索性能的一种重要技术。而相关反馈技术可以有效地减少用户标注。提出一种主动学习算法,带权Co-ASVM,用于改进相关反馈中样本选择的性能。颜色和纹理可以认为是一张图片的两个充分不相关的视图,分别计算颜色和纹理两种特征空间的权值,并在两种特征空间上分别进行SVM学习,对未标注样本进行分类;为了减少反馈样本的冗余,提出一种K-means聚类的主动反馈策略,将未标注样本返回给用户标注。实验表明,该图像检索方法有较高的准确性,并且有不错的检索效果。 Active learning has been proved to be a key technique for improving Content-Based Image Retrieva(lCBIR) performance.Relevance feedback technique can effectively reduce the cost of labeling.An active learning algorithm is put forward,weighted Co-Active SVM,to improve the performance of selective sampling in image retrieval.Color and texture are naturally considered as sufficient and uncorrelated views of an image;calculate the weight of color and texture feature space separately.SVM classifiers are learned in color and texture feature subspaces,respectively and the unlabeled data are classified.In order to reduce redundancy between these examples,K-means based active selection criterion is proposed to select images for user's feedback.The experimental results show that the proposed algorithm has a higher accuracy,and has the better retrieval effect.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第24期193-196,共4页 Computer Engineering and Applications
基金 中国博士后科学基金资助项目(No.20070420711) 重庆市科委自然科学基金计划资助项目(No.2007BB2372)~~
关键词 主动学习 支持向量机 K-MEANS 相关反馈 图像检索 active learning support vector machines K-means relevance feedback image retrieval
  • 相关文献

参考文献12

  • 1Datta R.,Joshi D,Li Jia,et al.Image retrieval:Ideas,influences,and trends of the new age[J].ACM Computing Surveys,2008.
  • 2Zhou Xiang Sean,Huang T S.Relevance feedback in image retrieval:A comprehensive review[J].ACM Multimedia Systems, 2003.
  • 3Lew M S.Content-based multimedia information retrieval: State of the art and challenges[J].ACM Transactions on Multimedia Computing, Communications, and Applications, 2006.
  • 4Zhang L,Lin F,Zhang B.Support vector machine for image retrieval[C]//Proceedings of IEEE International Conference on Image Processing, Thessaloniki, Greece, 2001 : 721-724.
  • 5Tong S,Chang E.Support vector machine active learning for image retrieval[C]//ACM Multimedia,2001.
  • 6Liu R,Wang H,Baba T,et al.SVM-based active feedback in image retrieval using clustering and unlabeled data[J].Pattem Recognition, 2008,41 (8) : 2645-2655.
  • 7Hoi S C, Zhu J, Jin R, et al.Semi-supervised SVM batch mode active learning for image retrieval[C]//26th IEEE Conference on Computer Vision and Pattern Recognition,CVPR 2008,2008.
  • 8Blum A, Mitchell T.Combining labeled and unlabeled data with co-training[C]//Proceedings of the llth Annual Conference on Computational Learning Theory, 1998 : 92-100.
  • 9Cheng J,Wang K.Active learning for image retrieval with CoSVM[J].Pattern Recognition, 2007,40( 1 ) : 330-334.
  • 10Ji Rong-rong,Yao H,Wang J,et al.Clustering-based subspace SVM ensemble for relevance feedback learning[C]//2008 IEEE International Conference on Multimedia and Expo, ICME 2008, 2008.

同被引文献28

  • 1龙军,殷建平,祝恩,赵文涛.主动学习研究综述[J].计算机研究与发展,2008,45(z1):300-304. 被引量:31
  • 2吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 3Haykin S. Neural networks and learning machines[M]. 3rd ed. MA:Prentice-Hall, 2008.
  • 4Zhang Lei, Lin Fu-zong, Zhang Bo. Support vector machine learning for image retrieval ECffProc of IEEE International Conference on Image Processing, 2001:721-724.
  • 5Wu Wei-ning, Guo Mao-zu, Liu Yang. A method of activ:learning with optimal sampling strategy [C]//Proc of CSAE1 12, 2012:725-729.
  • 6Tong S, Chang E. Support vector machine active learning for image retrieval EC//Proc of the 9th ACM International Conference on Multimedia, 2001 : 107-119.
  • 7Cohn D A, Atlas L, Ladner R E. Improving generalization with active learning[J]. Machine Learning, 1994,15 (2) : 201-221.
  • 8Seung H S, Opper M, Sompolinsky H. Query by commit teeEC3//Proc of the 5th Annual ACM Conference on Com- putational Learning Theory, 1992 : 287-294.
  • 9解洪胜,张虹.基于支持向量机的图像检索主动学习方法[J].山东师范大学学报(自然科学版),2007,22(4):46-48. 被引量:1
  • 10袁勋,吴秀清,洪日昌,宋彦,华先胜.基于主动学习SVM分类器的视频分类[J].中国科学技术大学学报,2009,39(5):473-478. 被引量:21

引证文献3

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部